Halogen bonds to dialkyl ether molecules have remained largely unexplored. We here address the synthesis and the structural chemistry of the first halogen-bonded noncyclic alkyl ethers, combining 1,4-diiodotetrafluorobenzene and the prototypic or commonly used ethers dimethyl ether, tetrahydrofuran, and methyl--butyl ether as halogen acceptors. Two different structural motifs based on moderately strong halogen bonds were obtained: Discrete trimolecular aggregates are formed, and unexpected halogen-bonded supramolecular chain adducts feature oxygen-bifurcated halogen bonds with 1:1 donor:acceptor ratio. Both structure types may be selectively obtained even for the same ether by adjusting the stoichiometry in the crystallization experiments. The geometric features of the etheric oxygen center were found to be flexible, in contrast to the almost linear geometry about the halogen donor atom. A high-resolution X-ray diffraction experiment on the extended adduct of dimethyl ether allowed us to study the electronic details of the acceptor-bifurcated I···O···I halogen bonds. The electron density in the bond critical points and derived properties such as the Laplacian indicate essentially electrostatic interactions and explain the geometrical flexibility of ethers in halogen bonds. Our studies demonstrate the great versatility of ethers as halogen bond acceptors, that can occur in many geometrical arrangements and whose contribution to nature's structural designs should not be underestimated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325402 | PMC |
http://dx.doi.org/10.1021/acsomega.4c05124 | DOI Listing |
Nat Commun
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, 5625 Renmin Street, 130022, Changchun, CHINA.
Single-atom catalysts (SACs) with high metal loadings are highly desirable but still challenging for large scale synthesis. Here we report a new technique named as dry-solid-electrochemical synthesis (DSES) for a general large-scale synthesis of SACs with high metal loadings in an energy-conservation and environment-friendly way. With it, a series of pure carbon-supported metal SACs (Platinum up to 35.
View Article and Find Full Text PDFChemistry
January 2025
Universitat Bielefeld, Chemie, Universitätsstraße 15, 33615, Bielefeld, GERMANY.
This work combines halogen and chalcogen bonding. Short, polarity directed C-X⋅⋅⋅Ch (X = Br or I, Ch = Se or Te) contacts were prepared by in situ low-temperature cocrystallization of liquid mixtures of neutral pentafluorohalogenobenzenes C6F5X and dimethyl chalco-genides Me2Ch. Solid-state structures of Me2Se and Me2Te were determined 150 and 125 years after their first description.
View Article and Find Full Text PDFChemistry
January 2025
Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.
Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States.
The propensities for sigma hole bonding by halogen atoms bonded to central atoms below period 2 in the periodic table remain to be systematically examined. Using iodine as our reference halogen atom, a comprehensive analysis of the tendencies for halogen and other forms of significant sigma hole bonding by simple compounds of main group atoms from H to At is accomplished. An examination of the structure and bonding of complexes formed by those iodine-substituted main group compounds and sigma donating bases (ammonia and trimethylamine) is performed to probe the viability of halogen bonding by heavy main group RM-I compounds in particular, given the historic focus on period 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!