A series of minimally sized regular dodecahedron-embedded metallofullerene REC clusters (RE = Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd) as basic units of nanoassembled materials with tunable magnetism and UV sensitivity have been explored using density functional theory (DFT). The contribution of the 4f orbital of the rare earth atom at the center of the C cage to the frontier molecular orbital of REC gives the REC cluster additional stability. The AdNDP orbitals of the four REC superatoms that conform to the spherical jellium model indicate that through natural population analysis and spin density diagrams, we observe a monotonic increase in the magnetic moment from Ce to Gd. This is attributed to the increased number of unpaired electrons in the 4f orbitals of lanthanide rare earth atoms. The UV-visible spectrum of REC20 clusters shows strong absorption in the mid-UV and near-UV bands. REC clusters encapsulating lanthanide rare earth atoms stand out for their tunable magnetism, UV sensitivity, and stability, making them potential new self-assembly materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325400 | PMC |
http://dx.doi.org/10.1021/acsomega.4c05912 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!