Bubble formation during mixing of the base elastomer and the curing agent for polydimethylsiloxane (PDMS) preparation presents a significant challenge, traditionally addressed through vacuum degassing or centrifugation. This study introduces a novel alternative for bubble removal in PDMS mixtures: a churning motion inspired by industrial dairy separation processes. A low-cost, manually operated, do-it-yourself (DIY) churning device has been developed for this purpose. We investigate the effectiveness of churning in eliminating bubbles across three different churning speeds and two PDMS mixtures with differing viscosities. The efficacy of this method is quantitatively assessed through the analysis of images captured during the churning process. The results demonstrate that bubble removal is notably more efficient in the PDMS mixture with a higher viscosity due to enhanced bubble coalescence. Among the tested speeds, fast churning emerges as the most effective, achieving bubble removal in less than 100 s-significantly outperforming the traditional vacuum degassing method, which requires over 3000 s. These findings highlight churning motion as a rapid, efficient, and cost-effective alternative for bubble removal in PDMS processing, promising significant advancements in material preparation techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325519 | PMC |
http://dx.doi.org/10.1021/acsomega.4c05290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!