A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long non-coding RNAs in bone formation: Key regulators and therapeutic prospects. | LitMetric

Long non-coding RNAs in bone formation: Key regulators and therapeutic prospects.

Open Life Sci

Department of Orthopedics, The People's Hospital of SND, Suzhou, Jiangsu, 215129, China.

Published: August 2024

Recent scientific investigations have revealed the intricate mechanisms underlying bone formation, emphasizing the essential role of long non-coding RNAs (lncRNAs) as critical regulators. This process, essential for skeletal strength and functionality, involves the transformation of mesenchymal stem cells into osteoblasts and subsequent deposition of bone matrix. lncRNAs, including HOX transcript antisense RNA (HOTAIR), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), differentiation antagonizing non-coding RNA (DANCR), and maternally expressed gene 3 (MEG3), have emerged as prominent players in this regulatory network. HOTAIR modulates osteoblast differentiation by interacting with chromatin-modifying enzymes, while MALAT1 regulates osteogenic differentiation through microRNA interactions. DANCR collaborates with Runx2 to fine-tune osteoblast differentiation, and MEG3 orchestrates multiple signaling pathways crucial for bone formation. Moreover, other lncRNAs such as H19, lncRNA for enhancing osteogenesis 3, rhabdomyosarcoma 2-associated transcript, urothelial cancer associated 1, taurine up-regulated gene 1, and nuclear enriched abundant transcript 1 contribute to the complex regulatory network governing osteoblast activities. Understanding the precise roles of these lncRNAs offers promising avenues for developing innovative therapeutic strategies targeting bone-related disorders like osteoporosis. Overall, this review summarizes the pivotal role of lncRNAs in bone formation, highlighting their potential as targets for future research endeavors aimed at advancing therapeutic interventions in bone diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330173PMC
http://dx.doi.org/10.1515/biol-2022-0908DOI Listing

Publication Analysis

Top Keywords

bone formation
16
long non-coding
8
non-coding rnas
8
regulatory network
8
osteoblast differentiation
8
bone
6
lncrnas
5
rnas bone
4
formation
4
formation key
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!