Surfactant-Mediated Assembly of Precision-Size Liposomes.

Chem Mater

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02139, United States.

Published: August 2024

AI Article Synopsis

  • - Liposomes enhance drug pharmacokinetics by effectively encapsulating drugs and targeting specific tissues, yet existing methods face challenges in producing consistently sized lipid vesicles for clinical use.
  • - A new surfactant-assisted assembly method allows for the precise creation of monodisperse liposomes ranging from 50 nm to 1 μm, using tangential flow filtration to efficiently remove over 99.9% of detergent and purify the samples.
  • - The study introduces two modes of liposome self-assembly, explaining how phase separation and detergent partitioning affect vesicle size, and demonstrates a direct relationship between liposome size and uptake in macrophages, showcasing its potential for targeted drug delivery.

Article Abstract

Liposomes can greatly improve the pharmacokinetics of therapeutic agents due to their ability to encapsulate drugs and accumulate in target tissues. Considerable effort has been focused on methods to synthesize these nanocarriers in the past decades. However, most methods fail to controllably generate lipid vesicles at specific sizes and with low polydispersity, especially via scalable approaches suitable for clinical product manufacturing. Here, we report a surfactant-assisted liposome assembly method enabling the precise production of monodisperse liposomes with diameters ranging from 50 nm to 1 μm. To overcome scalability limitations, we used tangential flow filtration, a scalable size-based separation technique, to readily concentrate and purify the liposomal samples from more than 99.9% of detergent. Further, we propose two modes of liposome self-assembly following detergent dilution to explain the wide range of liposome size control, one in which phase separation into lipid-rich and detergent-rich phases drives the formation of large bilayer liposomes and a second where the rate of detergent monomer partitioning into solution controls bilayer leaflet imbalances that promote fusion into larger vesicles. We demonstrate the utility of controlled size assembly of liposomes by evaluating nanoparticle uptake in macrophages, where we observe a clear linear relationship between vesicle size and total nanoparticle uptake.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325547PMC
http://dx.doi.org/10.1021/acs.chemmater.4c01127DOI Listing

Publication Analysis

Top Keywords

nanoparticle uptake
8
liposomes
5
surfactant-mediated assembly
4
assembly precision-size
4
precision-size liposomes
4
liposomes liposomes
4
liposomes greatly
4
greatly improve
4
improve pharmacokinetics
4
pharmacokinetics therapeutic
4

Similar Publications

In the central nervous system, apolipoprotein (APO) E-containing high-density lipoprotein (HDL)-like particles mediate the transport of glial-derived cholesterol to neurons, which is essential for neuronal membrane remodeling and maintenance of the myelin sheath. Despite this, the role of HDL-like cholesterol trafficking on Alzheimer's disease (AD) pathogenesis remains poorly understood. We aimed to examine cholesterol transport via HDL-like particles in cerebrospinal fluid (CSF) of AD patients compared to control individuals.

View Article and Find Full Text PDF

Sample multiplexing is an emerging method in single-cell RNA sequencing (scRNA-seq) that addresses high costs and batch effects. Current multiplexing schemes use DNA labels to barcode cell samples but are limited in their stability and extent of labeling across heterogeneous cell populations. Here, we introduce Nanocoding using lipid nanoparticles (LNPs) for high barcode labeling density in multiplexed scRNA-seq.

View Article and Find Full Text PDF

From microalgae to gastropods: Understanding the kinetics and toxicity of silver nanoparticles in freshwater aquatic environment.

Environ Pollut

January 2025

Department F.-A. Forel for Environmental and Aquatic Sciences, Section Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland. Electronic address:

Silver nanoparticles (AgNPs) are increasingly used in various consumer products and industrial applications, raising concerns about their environmental impact on aquatic ecosystems. This study investigated the physicochemical stability, trophic transfer, and toxic effects of citrate-coated AgNPs in a freshwater food chain including the diatom Cyclotella meneghiniana and the gastropod Lymnaea stagnalis. AgNPs remained stable in the exposure medium, with a minimal dissolution (<0.

View Article and Find Full Text PDF

Psoriasis seriously affects the physical and mental health of patients. Rocaglamide (RocA), derived from Aglaia odorata, exhibits potent pharmacological activities. Although its efficacy in psoriasis is unclear, RocA could be a promising therapeutic drug.

View Article and Find Full Text PDF

Intranasal drug administration offers a promising strategy for delivering combination antiretroviral therapy (cART) directly to the central nervous system to treat NeuroAIDS, leveraging the nose-to-brain route to bypass the blood-brain barrier. However, challenges such as enzymatic degradation in the nasal mucosa, low permeability, and mucociliary clearance within the nasal cavity must first be addressed to make this route feasible. To overcome these barriers, this study developed solid lipid nanoparticles (SLNs) with varying PEGylation levels (0 %, 5 %, 10 %, and 15 % w/w of PEGylated lipid), co-encapsulated with Elvitegravir (EVG) and Atazanavir (ATZ) as an integrase and protease inhibitor, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!