Accounting for the crowding effects inside a living cell is crucial to obtain a comprehensive view of the biomolecular processes and designing responsive polymer-based materials for biomedical applications. These effects have long been synonymous with the entropic volume exclusion effects. The role of soft, attractive intermolecular interactions remains elusive. Here, we investigate the effects of model cationic and anionic hydrophobic molecular crowders on the collapse equilibrium of uncharged model polymers using molecular dynamics simulations. Particularly, the effect of polymer architecture is explored where a 50-bead linear polymer model (Poly-I) and a branched polymer model (Poly-II) with nonpolar side chains are examined. The collapse of Poly-I is found to be highly favorable than in Poly-II in neat water. Addition of anionic crowders strengthens hydrophobic collapse in Poly-I, whereas collapse of Poly-II is only slightly favored over that in neat water. The thermodynamic driving forces are quite distinct in water. Collapse of Poly-I is driven by the favorable polymer-solvent entropy change (due to loss of waters to bulk on collapse), whereas collapse of Poly-II is driven by the favorable polymer-solvent energy change (due to favorable intrapolymer energy). The anionic crowders support the entropic mechanism for Poly-I by acting like surfactants, redirecting water dipoles toward themselves, and preferentially adsorbing on the Poly-I surface. In the case of Poly-II, the anionic crowders are loosely bound to polymer side chains, and loss of crowders and waters to the bulk on polymer collapse reduces the entropic penalty, thereby making collapse free energy slightly more favorable than in neat water. The results indicate the discriminating behavior of anionic crowders to strengthen the hydrophobic collapse. It is related to the structuring of water molecules around the termini and the central region of the two polymers. The results address the modulation of hydrophobic hydration by weakly hydrated ionic hydrophobes at crowded concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328333 | PMC |
http://dx.doi.org/10.1021/acspolymersau.4c00011 | DOI Listing |
J Am Chem Soc
November 2024
FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
Hydration plays a key role in the structure-specific stabilization of biomolecules such as nucleic acids. The hydration patterns of biased DNA sequences in the genome, such as GC-repetitive and AT-repetitive regions, are unique to their duplex grooves. As these regions are crucial for maintaining genomic homeostasis and preventing diseases such as cancer and neurodegenerative disorders, the effects of hydration on their stability and functions must be quantitatively analyzed in chemical environments that resemble intracellular conditions.
View Article and Find Full Text PDFACS Polym Au
August 2024
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
Accounting for the crowding effects inside a living cell is crucial to obtain a comprehensive view of the biomolecular processes and designing responsive polymer-based materials for biomedical applications. These effects have long been synonymous with the entropic volume exclusion effects. The role of soft, attractive intermolecular interactions remains elusive.
View Article and Find Full Text PDFBiomacromolecules
September 2024
Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Quebec J3X 1P7, Canada.
In nature, enzymatic pathways often involve compartmentalization effects that can modify the intrinsic activity and specificity of the different enzymes involved. Consequently, extensive research has focused on replicating and studying the compartmentalization effects on individual enzymes and on multistep enzyme "cascade" reactions. This study explores the influence of compartmentalization achieved using molecular crowding on the glucose oxidase/horseradish peroxidase (GOx/HRP) cascade reaction.
View Article and Find Full Text PDFLangmuir
March 2024
Department of Physics and Physical Oceanography, Memorial University, St. John's, Newfoundland A1B 3X7, Canada.
The cellular environment is crowded with macromolecules of different shapes and sizes. The effect of this macromolecular crowding has been studied in a variety of synthetic crowding environments: two popular examples are the compact colloid-like Ficoll macromolecule and the globular protein bovine serum albumin (BSA). Recent studies have indicated that a significant component of bound or surface-associated water in these crowders reduces the available free volume.
View Article and Find Full Text PDFBiophys J
January 2024
Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Data Science, Curtin University, Perth, Western Australia, Australia. Electronic address:
The aqueous environment inside cells is densely packed. A typical cell has a macromolecular concentration in the range 90-450 g/L, with 5%-40% of its volume being occupied by macromolecules, resulting in what is known as macromolecular crowding. The space available for the free diffusion of metabolites and other macromolecules is thus greatly reduced, leading to so-called excluded volume effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!