Betaine supplementation in dairy cattle has gained attention due to its potential benefits to production and health as a methyl donor, which can play a crucial role in the metabolism of dairy cows. The objective of the current meta-analysis was to quantify the effects of betaine supplementation on milk production, composition, β-hydroxybutyric acid (BHBA), and non-esterified fatty acids (NEFA). A systematic literature search was carried out, all relevant studies were retrieved, and the meta-analysis was carried out. The mean difference (MD) for dry matter intake (DMI) using the random-effects model was 0.499 kg/d (P < 0.0001). The subgroup analysis indicated that supplementing betaine in heat-stressed cows increased DMI by 0.584 kg/d (P < 0.001), while in cows not exposed to heat stress, DMI was increased by 0.381 kg/d (P = 0.007). The energy-corrected milk (ECM) increased by 1.36 kg/d (P < 0.0001). The milk fat yield was significantly increased in betaine-supplemented cows (MD = 0.040 kg/d, 95% CI = 0.015 to 0.065). The milk protein yield (kg/d) (MD = 0.014, P = 0.138) was increased (MD = 0.035, P = 0.0005) by betaine supplementation. The lactose yield (kg/d) was also significantly higher (MD = 0.055, P = 0.020) in betaine-supplemented cows. The standardized mean difference (SMD) for NEFA (SMD = - 0.447, 95% CI = - 1.029 to 0.135, P = 0.114) and BHBA (SMD = - 0.130, 95% CI = - 0.491 to 0.234). In conclusion, the findings from this meta-analysis suggest that betaine supplementation positively influences DMI, ECM, milk fat yield, milk lactose yield, and milk protein yield. Subgroup analysis further indicated that the positive effects on DMI are greater in heat-stressed cows compared to those not exposed to heat stress. The analysis did not find significant effects on the levels of NEFA or BHBA, suggesting that betaine supplementation may not directly influence these metabolic parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398911PMC
http://dx.doi.org/10.1093/jas/skae241DOI Listing

Publication Analysis

Top Keywords

betaine supplementation
12
effects betaine
8
dry matter
8
matter intake
8
non-esterified fatty
8
fatty acids
8
β-hydroxybutyric acid
8
dairy cattle
8
supplementation dry
4
intake milk
4

Similar Publications

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

This study aimed to investigate the effect of a multi-strain probiotic (Bifidobacterium B8101, Lactobacillus L8603, Saccharomyces bayanus S9308, Enterococcus SF9301), betaine, and their combination on intestinal epithelial development and growth performance in broilers. A total of 2800 one-day-old Ross 308 chickens were randomly divided into four groups: control (Ctrl) fed with a basal diet, multi-strain probiotic (Pb) group fed with basal diet + 100 mg/day/bird probiotic (1-14 d), betaine (Bet) fed with basal diet + 0.1% betaine (1-35 d), and a combination (Pb&Bet) fed with both probiotics and betaine.

View Article and Find Full Text PDF

To explore the effects of methionine (Met) supplementation on cognitive dysfunction and the associated mechanisms in aging mice. The mice were administrated 0.15 g/kg/day D-galactose subcutaneously and fed a normal (0.

View Article and Find Full Text PDF

Introduction: Fatty liver syndrome (FLS) is a prevalent nutritional and metabolic disease that mainly occurs in caged laying hens, causing substantial losses in the poultry industry. The study was carried out to explore the protective effect and potential mechanism of betaine on early FLS.

Methods: There were three groups: Con group (basal diet), FLS group (Dexamethasone injection + basal diet) and betaine group (Dexamethasone injection + basal diet with 8 g/kg betaine).

View Article and Find Full Text PDF

Betaine and aging: A narrative review of findings, possible mechanisms, research perspectives, and practical recommendations.

Ageing Res Rev

December 2024

Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, ul. Wojska Polskiego 31, Poznań 60-624, Poland.

The rapid aging of the global population necessitates addressing age-related conditions through innovative strategies. Nutritional supplements have emerged as potential interventions for preventing or slowing age-related changes, with betaine being a promising candidate. This systematic review aims to provide a comprehensive analysis of current literature on the impact of betaine on the aging process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!