Introduction: Osteoarthritis (OA) is one of the most common degenerative joint diseases in the elderly, which is featured by the degradation of articular cartilage. Recently, platelet-rich plasma (PRP) injection into the affected joint has become one biological therapy for OA treatment. The OPG/RANKL/ RANK signalling has been reported to mediate OA progression. Our study aimed to confirm whether PRP injection retards OA development through the regulation of the OPG/RANKL/RANK system.
Material And Methods: The OA rat models were induced by medial menisci resection combined with anterior cruciate ligament transection. Four weeks after surgery, OA-induced rats received intra- articular injection with 50 μL PRP once a week for 6 weeks. Rats were euthanised one week after the 6th injection. Rat knee joints were subjected to histopathological examination by haematoxylin- eosin (H&E) and safranin O staining. Osteoprotegerin (OPG), receptor activator of nuclear factor kappa B (RANK), and RANK ligand (RANKL) in the articular cartilage of rats were tested through immunofluorescence staining and western blotting. Serum interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels were measured by enzyme-linked immunosorbent assay (ELISA). Matrix metalloproteinase- 13 (MMP-13), aggrecan, collagen α, IL-1β, IL-6, tumour necrosis factor-alpha (TNF-α), and nuclear factor kappa-B (NF-κB) mRNA and protein expression in rat articular cartilage were examined by real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively.
Results: Intra-articular injections of PRP significantly improved the structural integrity of the articular cartilage and enhanced the synthesis of glycosaminoglycans. PRP reduced MMP-13 protein level but increased aggrecan and collagen α protein levels in articular cartilage of OA rats. OA-induced increase in serum IL-1β, IL-6, and TNF-α concentrations as well as increased MMP-13, and decreased collagen II mRNA levels were reversed by the administration of PRP. OA increased IL-1β, TNF-α, and NF-κB mRNA expression in rat articular cartilage whereas PRP administration ameliorated these changes. Moreover, in the articular tissue of OA-induced rats the increased OPG protein level was further elevated by PRP injections whereas the protein level of RANK did not change. The increase in the protein level of RANKL in OA-induced articular tissue was offset by PRP administration. PRP elevated OPG mRNA expression and the OPG/RANKL mRNA ratio, but reduced RANKL mRNA expression and the RANKL/RANK mRNA ratio in the articular tissue of OA-induced rats.
Conclusions: PRP mitigates cartilage degradation and inflammation in experimental knee OA by regulating the OPG/RANKL/RANK signalling system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5603/fhc.100179 | DOI Listing |
J Craniofac Surg
December 2024
Department of Endocrinology and Metabolism, West China Hospital, Chengdu, China.
This study aimed to explore the construction of experimental animal models replicating cartilage defects across diverse load-bearing sites, compare self-repair conditions, and examine the role of mechanical stimulation in cartilage self-repair. Experimental animal models were established in rabbits to simulate full-thickness cartilage defects without penetrating the subchondral bone, at various load-bearing sites, including the posterior femoral condyle, anterior femoral condyle and femoral trochlear of knee joint, and the humerus of the shoulder joint. The successful exposure and construction of cartilage defects at the anterior femoral condyle, femoral trochlear, and posterior femoral condyle through the medial extension of surgical incision.
View Article and Find Full Text PDFTomography
December 2024
Hospital Regional de Alta Especialidad de la Peninsula de Yucatan, Servicios de Salud del IMSS-BIENESTAR, Merida 97130, Yucatan, Mexico.
Background: Femoroacetabular impingement (FAI) is a condition caused by abnormal contact between the femur head and the acetabulum, which damages the labrum and articular cartilage. While the prevalence and the type of impingement may vary across human groups, the variability among populations with short height or with a high prevalence of overweight has not yet been explored. Latin American studies have rarely been conducted in reference to this condition, including the Mayan and mestizo populations from the Yucatan Peninsula.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China.
Background: Posttraumatic osteoarthritis (PTOA) is directly associated with early acute articular cartilage injury. Inhibition of cartilage destruction immediately following joint damage can effectively slow or prevent PTOA progression. Therefore, we sought to determine intervention targets and therapeutic strategies in the acute stage of cartilage injury.
View Article and Find Full Text PDFMed Mol Morphol
December 2024
Graduate School, Tianjin Medical University, Tianjin, 300070, China.
Ankylosing spondylitis (AS) is a chronic inflammatory disease involving the spine and bone joints, which is characterized by hyperosteogeny, ossification of ligaments, and ankylosis. Quercetin is a natural polyphenolic compound with various biological activities such as antioxidant, anti-inflammatory, and anti-tumor. It was to explore the effect of quercetin on AS ossification and its molecular mechanism.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China.
The potassium channel Kv1.3 plays an important role in regulating immune cell functions in many inflammatory diseases whereas rarely in osteoarthritis (OA). Here, it is demonstrated that the Kv1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!