Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Chemotherapy enhances survival rates for pancreatic cancer (PC) patients postsurgery, yet less than 60% complete adjuvant therapy, with a smaller fraction undergoing neoadjuvant treatment. Our study aimed to predict which patients would complete pre- or postoperative chemotherapy through machine learning (ML).
Methods: Patients with resectable PC identified in our institutional pancreas database were grouped into two categories: those who completed all intended treatments (i.e., surgery plus either neoadjuvant or adjuvant chemotherapy), and those who did not. We applied logistic regression with lasso penalization and an extreme gradient boosting model for prediction, and further examined it through bootstrapping for sensitivity.
Results: Among 208 patients, the median age was 69, with 49.5% female and 62% white participants. Most had an Eastern Cooperative Oncology Group (ECOG) performance status of ≤2. The PC predominantly affected the pancreatic head. Neoadjuvant and adjuvant chemotherapies were received by 26% and 47.1%, respectively, but only 49% completed all treatments. Incomplete therapy was correlated with older age and lower ECOG status. Negative prognostic factors included worsening diabetes, age, congestive heart failure, high body mass index, family history of PC, initial bilirubin levels, and tumor location in the pancreatic head. The models also flagged other factors, such as jaundice and specific cancer markers, impacting treatment completion. The predictive accuracy (area under the receiver operating characteristic curve) was 0.67 for both models, with performance expected to improve with larger datasets.
Conclusions: Our findings underscore the potential of ML to forecast PC treatment completion, highlighting the importance of specific preoperative factors. Increasing data volumes may enhance predictive accuracy, offering valuable insights for personalized patient strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jso.27812 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!