Thrombosis presents a critical health threat globally, with high mortality and incidence rates. Clinical treatment faces challenges such as low thrombolytic agent bioavailability, thrombosis recurrence, ischemic hypoxia damage, and neural degeneration. This study developed biocompatible Chlamydomonas Reinhardtii micromotors (CHL) with photo/magnetic capabilities to address these needs. These CHL micromotors, equipped with phototaxis and photosynthesis abilities, offer promising solutions. A core aspect of this innovation involves incorporating polysaccharides (glycol chitosan (GCS) and fucoidan (F)) into ferric Metal-organic frameworks (MOFs), loaded with urokinase (UK), and subsequently self-assembled onto the multimodal CHL, forming a core-shell microstructure (CHL@GCS/F-UK-MOF). Under light-navigation, CHL@GCS/F-UK-MOF is shown to penetrate thrombi, enhancing thrombolytic biodistribution. Combining CHL@GCS/F-UK-MOF with the magnetic hyperthermia technique achieves stimuli-responsive multiple-release, accelerating thrombolysis and rapidly restoring blocked blood vessels. Moreover, this approach attenuates thrombi-induced ischemic hypoxia disorder and tissue damage. The photosynthetic and magnetotherapeutic properties of CHL@GCS/F-UK-MOF, along with their protective effects, including reduced apoptosis, enhanced behavioral function, induced Heat Shock Protein (HSP), polarized M2 macrophages, and mitigated hypoxia, are confirmed through biochemical, microscopic, and behavioral assessments. This multifunctional biomimetic platform, integrating photo-magnetic techniques, offers a comprehensive approach to cardiovascular management, advancing related technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202401383 | DOI Listing |
Cell Commun Signal
January 2025
Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.
Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.
Chem Biol Interact
January 2025
Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, PR China. Electronic address:
Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, 18Th Zhongshan 2Nd Road, Baise, 533000, Guangxi, China.
A growing body of evidence suggests the involvement of long noncoding ribose nucleic acids (lncRNAs) in acute kidney injury (AKI). This study focused on the mechanistic role of lncRNA small nucleolar RNA host gene 12 (SNHG12) in ischemia/reperfusion (I/R)-mediated AKI. A model of hypoxia/reoxygenation (H/R) was created using human kidney cells (HK-2).
View Article and Find Full Text PDFMol Biotechnol
January 2025
The First Affiliated Hospital of Hebei North University Address, 12 Changqing Road, Zhangjiakou City, Hebei Province, China.
Renal ischemia-reperfusion injury (RIRI) is a primary cause of acute kidney injury (AKI), frequently resulting in high mortality rates and progression to chronic kidney disease (CKD). This study aimed to investigate the therapeutic potential of total saponins from Panax notoginseng (PNS) in the context of RIRI. Utilizing a murine RIRI model, the efficacy of PNS was evaluated, demonstrating a significant reduction in renal inflammation and cellular pyroptosis.
View Article and Find Full Text PDFEur J Neurol
January 2025
Epilepsy Center, Department of Neurology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
Background: Epileptiform activity, including status epilepticus (SE), occurs in up to one-third of comatose survivors of cardiac arrest and may predict poor outcome. The relationship between SE and hypoxic-ischemic brain injury (HIBI) is not established.
Methods: This is a single-center retrospective study on consecutive patients with post-anoxic super-refractory SE.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!