To comprehensively assess the true visual function of clinical dry eye patients and the comprehensive impact of blinking characteristics on functional vision of the human eye, an intelligent vision measurement system has been designed and developed to detect and analyze blinks from the side. The system employs deep learning keypoint recognition technology to analyze eyelid features from a lateral perspective. It presents the data of identified key points for the upper and lower eyelids in a line chart format and annotates the trough of each blink. By setting benchmark values, the system automatically calculates the proportion of complete and incomplete blinks in the tested individuals. The results indicate that the system is stable in performance and accurate in measurement, successfully achieving the anticipated design objectives. It thereby provides reliable technical support for future clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.12455/j.issn.1671-7104.230652DOI Listing

Publication Analysis

Top Keywords

intelligent vision
8
vision measurement
8
measurement system
8
system
5
[practical application
4
application intelligent
4
system based
4
based deep
4
deep learning]
4
learning] comprehensively
4

Similar Publications

Cranioventral pulmonary consolidation (CVPC) is a common lesion observed in the lungs of slaughtered pigs, often associated with Mycoplasma (M.) hyopneumoniae infection. There is a need to implement simple, fast, and valid CVPC scoring methods.

View Article and Find Full Text PDF

AI generated synthetic STIR of the lumbar spine from T1 and T2 MRI sequences trained with open-source algorithms.

AJNR Am J Neuroradiol

January 2025

From the Orthopedic Data Innovation Lab (ODIL), Hospital for Special Surgery (A.M.L.S., M.A.F.), Department of Radiology and Imaging, Hospital for Special Surgery Centre (E.E.X, Z.I, E.T.T, D.B.S, J.L.C)and Department of Population Health Sciences, Weill Cornell Medicine (M.A.F), New York, New York, USA.

Background And Purpose: To train and evaluate an open-source generative adversarial networks (GANs) to create synthetic lumbar spine MRI STIR volumes from T1 and T2 sequences, providing a proof-of-concept that could allow for faster MRI examinations.

Materials And Methods: 1817 MRI examinations with sagittal T1, T2, and STIR sequences were accumulated and randomly divided into training, validation, and test sets. GANs were trained to create synthetic STIR volumes using the T1 and T2 volumes as inputs, optimized using the validation set, then applied to the test set.

View Article and Find Full Text PDF

Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major categories: discriminative and generative AI. For discriminative tasks, conventional convolutional neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the transformer architecture in natural language processing, has emerged as useful techniques for discriminating retinal images.

View Article and Find Full Text PDF

Glaucoma, a severe eye disease leading to irreversible vision loss if untreated, remains a significant challenge in healthcare due to the complexity of its detection. Traditional methods rely on clinical examinations of fundus images, assessing features like optic cup and disc sizes, rim thickness, and other ocular deformities. Recent advancements in artificial intelligence have introduced new opportunities for enhancing glaucoma detection.

View Article and Find Full Text PDF

van der Waals Photonic Bipolar Junction Transistors Capable of Simultaneously Discerning Wavelength Bands and Dual-Function Chip Application.

ACS Nano

January 2025

State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, School of Microelectronics, Fudan University, Shanghai 200433, China.

The exponential growth of the Internet of Things (IoTs) has led to the widespread deployment of millions of sensors, crucial for the sensing layer's perception capabilities. In particular, there is a strong interest in intelligent photonic sensing. However, the current photonic sensing device and chip typically offer limited functionality, and the devices providing their power take up excessive amounts of space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!