Siderophores are essential molecules released by some bacteria and fungi in iron-limiting environments to sequester ferric iron, satisfying metabolic needs. Flavin-dependent N-hydroxylating monooxygenases (NMOs) catalyze the hydroxylation of nitrogen atoms to generate important siderophore functional groups such as hydroxamates. It has been demonstrated that the function of NMOs is essential for virulence, implicating these enzymes as potential drug targets. This chapter aims to serve as a resource for the characterization of NMO's enzymatic activities using several biochemical techniques. We describe assays that allow for the determination of steady-state kinetic parameters, detection of hydroxylated amine products, measurement of the rate-limiting step(s), and the application toward drug discovery efforts. While not exhaustive, this chapter will provide a foundation for the characterization of enzymes involved in siderophore biosynthesis, allowing for gaps in knowledge within the field to be addressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2024.06.014 | DOI Listing |
Microorganisms
January 2025
Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as J2-5-19.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 6, H-6725 Szeged, Hungary.
Bacteriophage therapy represents a promising strategy to combat multidrug-resistant pathogens, such as . In this study, we explored the effects of a bacteriophage infection on an Extended Spectrum Beta-Lactamase (ESBL) positive isolate. We used next generation sequencing, proteomics and phenotypic screens to investigate the effect of bacteriophage infections on metabolism and resistance phenotypes.
View Article and Find Full Text PDFJ Struct Biol X
June 2025
Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy.
Siderophore-mediated iron acquisition is essential for the virulence of , a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in .
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China.
The utilization of chemical pesticides recovers 30%-40% of food losses. However, their application has also triggered a series of problems, including food safety, environmental pollution, pesticide resistance, and incidents of poisoning. Consequently, green pesticides are increasingly seen as viable alternatives to their chemical counterparts.
View Article and Find Full Text PDFPLoS One
January 2025
South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa.
Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!