Detachable acoustofluidic droplet-sorter.

Anal Chim Acta

Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan. Electronic address:

Published: September 2024

Background: Cell sorting is crucial in isolating specific cell populations. It enables detailed analysis of their functions and characteristics and plays a vital role in disease diagnosis, drug discovery, and regenerative medicine. Fluorescence-activated cell sorting (FACS) is considered the gold standard for high-speed single-cell sorting. However, its high cost, complex instrumentation, and lack of portability are significant limitations. Additionally, the high pressure and electric fields used in FACS can harm cell integrity. In this work, an acoustofluidic device was developed in combination with surface acoustic wave (SAW) and droplet microfluidics to isolate single-cell droplets with high purity while maintaining high cell viability.

Result: Human embryonic kidney cells, transfected with fluorescent reporter plasmids, were used to demonstrate the targeted droplet sorting containing single cells. The acoustofluidic sorter achieved a recovery rate of 81 % and an accuracy rate higher than 97 %. The device maintained a cell viability rate of 95 % and demonstrated repeatability over 20 consecutive trials without compromising efficiency, thus underscoring its reliability. Thermal image analysis revealed that the temperature of the interdigital transducer (IDT) during SAW operation remained within the permissible range for maintaining cell viability.

Significance: The findings highlighted the sensitivity and effectiveness of the developed acoustofluidic device as a tool for single-cell sorting. The detachable microfluidic chip design enables the reusability of the expensive IDT, making it cost-effective and reducing the risk of cross-contamination between different biological samples. The results underscore its capability to accurately isolate individual cells on the basis of specific criteria, showcasing its potential to advance research and clinical applications requiring precise cell sorting methodologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.343043DOI Listing

Publication Analysis

Top Keywords

cell sorting
12
cell
8
single-cell sorting
8
acoustofluidic device
8
sorting
6
detachable acoustofluidic
4
acoustofluidic droplet-sorter
4
droplet-sorter background
4
background cell
4
sorting crucial
4

Similar Publications

Tattooing is a popular form of body art that has evolved from ancient times into being part of modern society. The understanding of biotransformation processes of coloring tattoo pigments in human skin is limited although skin reactions to tattoos with unknown culprits occur. Electrochemistry coupled to mass spectrometry (EC-MS) has widely been used as a tool for a purely instrumental approach to simulating the enzymatic biotransformation of xenobiotics.

View Article and Find Full Text PDF

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Background: Abnormal brain inflammation is an important feature of Alzheimer's disease (AD). Central nervous system (CNS) inflammation is highly related to immune cell activation. Homeostasis of immune cell activity regulation is crucial for CNS autoimmune response.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is an autosomal dominant condition causing severe neurodegeneration in the striatum and the entorhinal cortex (EC). An epigenome wide association study of DNA methylation in HD by our group, identified potential hypomethylation at the PTGDS gene in the striatum. We aimed to validate this result through pyrosequencing, examining the locus in fine detail, and to assess the signal specificity by profiling multiple neurodegenerative diseases.

View Article and Find Full Text PDF

Background: SNX19 is a key player in endolysosomal and autophagy pathways, which have been extensively reported in neuronal dysfunction and neurodegenerative diseases. Although genetic and cellular evidence suggests SNX19 contributes to neuropathology, the underlying mechanisms remain unknown. Here, we propose to study the mechanism in aging postmortem brain tissue at single cell level and model SNX19 in human induced pluripotent stem cell (hiPSCs) derived brain organoids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!