Background: Food safety has become an essential aspect of public concern and there are lots of detection means. Liquid chromatography plays a dominating role in food safety inspection because of its high separation efficiency and reproducibility. However, with the increasing complexity of real samples and monitoring requirements, conventional single-mode chromatography would require frequent column replacement and cannot separate different kinds of analytes on a single column simultaneously, which is costly and time-consuming. There is a great need for fabricating mixed-mode stationary phases and validating the feasibility of employing mixed-mode stationary phases for food safety inspection.
Results: This work fabricated multifunctional stationary phases for liquid chromatography to determine diverse food additives under the mixed mode of RPLC/HILIC/IEC. Two dicationic ionic liquid silanes were synthesized and bonded onto the silica gel surface. The functionalized silica was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and elemental analysis. Both columns provide satisfactory separation performance towards 6 hydrophilic nucleosides, 4 hydrophobic polycyclic aromatic hydrocarbons, and 5 anions. Great repeatability of retention (RSD <0.1 %) and column efficiency (100330 plate/m) were obtained. Thermomechanical analysis and linear solvation energy relationship investigated the retention mechanism. Finally, the better in two prepared columns was employed to separate and determine the contents of NO and NO in vegetables(highest 4906 mg kg NO in spinach), preservatives in bottled beverages (180.8 mg kg sodium benzoate in soft drink), and melamine in milk with satisfactory performance and recovery rates ranging from 96.4 % to 105.6 %.
Significance: This work developed a novel scheme for preparing mixed-mode stationary phases by dicationic ionic liquid which provides great separation selectivity. Most importantly, this work proved the superiority of employing mixed-mode stationary phases for food safety inspection, which might avoid high-cost and frequent changes of columns and chromatography systems in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.343018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!