Sulfide produced from dissimilatory sulfate reduction can combine with hydrogen to form hydrogen sulfide, causing odor issues and environmental pollution. To address this problem, ferrihydrite-humic acid coprecipitate was added to improve assimilatory sulfate reduction (ASR), resulting in a decrease in sulfide production (190.2 ± 14.6 mg/L in the Fh-HA group vs. 246.3 ± 8.1 mg/L in the Fh group) with high sulfate removal. Humic acid, adsorbed on the surface of ferrihydrite, delayed secondary mineralization of ferrihydrite under sulfate reduction condition. Therefore, more iron-reducing species (e.g. Trichococcus, Geobacter) were enriched with ferrihydrite-humic acid coprecipitate to transfer more electrons to other species, which led to more COD reduction, an increase in electron transfer capacity, and a decrease in the NADH/NAD ratio. Metagenomic analysis also indicated that functional genes related to ASR was enhanced with ferrihydrite-humic acid coprecipitate. Thus, the addition of ferrihydrite-humic acid coprecipitate can be considered as a promising candidate for anaerobic sulfate wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131308 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!