Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Major depressive disorder (MDD) is a widespread mental health issue, impacting spatial and temporal aspects of brain activity. The neural mechanisms behind MDD remain unclear. To address this gap, we introduce a novel measure, spatiotemporal topology (SPT), capturing both the hierarchy and dynamic attributes of brain activity in depressive disorder patients.
Methods: We analyzed fMRI data from 285 MDD inpatients and 141 healthy controls (HC). SPT was assessed by coupling brain gradient measurement and time delay estimation. A nested machine learning process distinguished between MDD and HC using SPT. Person's correlation tested the link between SPT's and symptom severity, and another machine learning method predicted the gap between patients' chronological and brain age.
Results: SPT demonstrated significant differences between patients and healthy controls (F = 2.944, p < 0.001). Machine learning approaches revealed SPT's ability to discriminate between patients and healthy controls (Accuracy = 0.65, Sensitivity = 0.67, Specificity = 0.64). Moreover, SPT correlated with the severity of depression symptom (r = 0.32. pFDR = 0.045) and predicted the gap between patients' chronological age and brain age (r = 0.756, p < 0.001).
Limitations: Evaluation of brain dynamics was constrained by MRI temporal resolution.
Conclusions: Our study introduces SPT as a promising metric to characterize the spatiotemporal signature of brain function, providing insights into deviant brain activity associated with depressive disorders and advancing our understanding of their psychopathological mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jad.2024.08.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!