3-Nitrotyrosine shortens axons of non-dopaminergic neurons by inhibiting mitochondrial motility.

Neurochem Int

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan; Department of Industrial Innovation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan; Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui, Japan; Department of Applied Chemistry and Biotechnology, Faculty of Engineering, University of Fukui, Fukui, Japan; Life Science Innovation Center, University of Fukui, Fukui, Japan. Electronic address:

Published: October 2024

3-Nitrotyrosine (3-NT), a byproduct of oxidative and nitrosative stress, is implicated in age-related neurodegenerative disorders. Current literature suggests that free 3-NT becomes integrated into the carboxy-terminal domain of α-tubulin via the tyrosination/detyrosination cycle. Independently of this integration, 3-NT has been associated with the cell death of dopaminergic neurons. Given the critical role of tyrosination/detyrosination in governing axonal morphology and function, the substitution of tyrosine with 3-NT in this process may potentially disrupt axonal homeostasis, although this aspect remains underexplored. In this study, we examined the impact of 3-NT on the axons of cerebellar granule neurons, which is used as a model for non-dopaminergic neurons. Our observations revealed axonal shortening, which correlated with the incorporation of 3-NT into α-tubulin. Importantly, this axonal effect was observed prior to the onset of cellular death. Furthermore, 3-NT was found to diminish mitochondrial motility within the axon, leading to a subsequent reduction in mitochondrial membrane potential. The suppression of syntaphilin, a protein responsible for anchoring mitochondria to microtubules, restored the mitochondrial motility and axonal elongation that were inhibited by 3-NT. These findings underscore the inhibitory role of 3-NT in axonal elongation by impeding mitochondrial movement, suggesting its potential involvement in axonal dysfunction within non-dopaminergic neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2024.105832DOI Listing

Publication Analysis

Top Keywords

non-dopaminergic neurons
12
mitochondrial motility
12
3-nt
9
axonal elongation
8
axonal
7
neurons
5
mitochondrial
5
3-nitrotyrosine shortens
4
shortens axons
4
axons non-dopaminergic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!