Construction of highly active and stable recombinant nattokinase by engineered bacteria and computational design.

Arch Biochem Biophys

Liaoning Provincial Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules, Shenyang, 110036, China; Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China; School of Pharmacy, Liaoning University, Shenyang, 110036, China. Electronic address:

Published: October 2024

Nattokinase (NK) is an enzyme that has been recognized as a new potential thrombolytic drug due to its strong thrombolytic activity. However, it is difficult to maintain the enzyme activity of NK during high temperature environment of industrial production. In this study, we constructed six NK mutants with potential for higher thermostability using a rational protein engineering strategy integrating free energy-based methods and molecular dynamics (MD) simulation. Then, wild-type NK and NK mutants were expressed in Escherichia coli (E. coli), and their thermostability and thrombolytic activity were tested. The results showed that, compared with wild-type NK, the mutants Y256P, Q206L and E156F all had improved thermostability. The optimal mutant Y256P showed a higher melting temperature (T) of 77.4 °C, an increase of 4 °C in maximum heat-resistant temperature and an increase of 51.8 % in activity at 37 °C compared with wild-type NK. Moreover, we also explored the mechanism of the increased thermostability of these mutants by analysing the MD trajectories under different simulation temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2024.110126DOI Listing

Publication Analysis

Top Keywords

thrombolytic activity
8
wild-type mutants
8
compared wild-type
8
construction highly
4
highly active
4
active stable
4
stable recombinant
4
recombinant nattokinase
4
nattokinase engineered
4
engineered bacteria
4

Similar Publications

Clinical Rationale For Study: We have reported that intracerebral haemorrhage (ICH) of unknown cause at a young age is associated with lower prothrombin and factor VII and higher antithrombin activity, along with the formation of looser fibrin networks displaying enhanced lysability. Patients with mild-to-moderate bleeding of unknown cause have elevated levels of free plasma tissue factor pathway inhibitor alpha (fTFPIα), inhibiting the tissue factor-factor VII complex and prothrombinase.

Aim Of Study: We hypothesised that patients with an intracerebral haemorrhage (ICH) of unknown cause may also exhibit higher fTFPIα.

View Article and Find Full Text PDF

Use of Tranexamic Acid in SARS-COV-2: Boon or Bane?

Arch Razi Inst

June 2024

Department of Community and Family Medicine, AIIMS Bibinagar, Hyderabad, Telangana-508126.

The devastating pandemic of SARS-CoV-2 (COVID-19) began in Wuhan, China, and spread rapidly through most parts of the world in the second half of 2020. The air droplet spread of SARS-CoV-2 is of great global health concern as it is potentially fatal. Various drugs and treatment modalities have been tried to date, but none have been found to be definitive.

View Article and Find Full Text PDF

Mannose oligosaccharide (MOS) has been shown to promote animal growth, maintain intestinal health, and activate the intestinal immune system. However, the question of whether MOS can stimulate the immune system and alleviate acetylsalicylic acid (ASA)-induced gut damage remains unresolved. The purpose of this study was to investigate the impact of MOS pretreatment on the immunological and anti-inflammatory capabilities of rats with ASA-induced intestinal injury.

View Article and Find Full Text PDF

Background: Intermediate-high risk pulmonary embolism (PE) carries a significant risk of hemodynamic deterioration or death. Treatment should balance efficacy in reducing clot burden with the risk of complications, particularly bleeding. Previous studies on high-dose, short-term thrombolysis with alteplase (rtPA) showed a reduced risk of hemodynamic deterioration but no change in mortality and increased bleeding complications.

View Article and Find Full Text PDF

Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!