Oxidative stress plays an important role in various diseases. miR-221 has been reported to regulate oxidative stress. However, the mechanism of miR-221 in regulating oxidative stress induced by sCPPS remains unclear. This study aimed to investigate the protective effects and mechanisms of miR-221 on oxidative stress induced by sCPPS. The expression of SOD, CAT, MDA, LDH, MMP, caspase-3 activity and apoptosis were measured. In addition, the key signaling factors in the Keap1-Nrf2-ARE signaling pathway were determined by real-time PCR and Western blot. Mice were employed to evaluate the effects of sCPPS and the possible mechanism in vivo. sCPPS promoted the expression of SOD and CAT and activated Keap1-Nrf2-ARE signaling pathway inhibit the MDA content, MMP, caspase-3 activity, apoptosis and LDH release rate after transfection with miR-221 mimics and inhibitors. Consistently, sCPPS has the potential to enhance the expression of antioxidant enzymes as well as upregulate mRNA expression of crucial signal proteins in vivo. miR-221 on oxidative stress protection induced by sCPPS possibly through regulating the Keap1-Nrf2-ARE signaling pathway in macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134815 | DOI Listing |
Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.
Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.
Alzheimers Dement
December 2024
School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.
Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Afe Babalola University, Ado-Ekiti (ABUAD), Ado-Ekiti, Ekiti state, Nigeria.
Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).
Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!