A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf40rt97eqmntlvjdlkhom6cv20vjigtb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Wnt-5a/Ca pathway modulates endogenous current and oocyte structure of Xenopus laevis. | LitMetric

Wnt-5a/Ca pathway modulates endogenous current and oocyte structure of Xenopus laevis.

Biochem Biophys Res Commun

Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile. Electronic address:

Published: December 2024

AI Article Synopsis

  • - Wnt signaling is crucial for various cellular processes, and Xenopus laevis oocytes serve as an effective model to study these mechanisms, particularly for receptors like Frizzled 7 found in the CNS.
  • - Using two-electrode voltage clamp recordings, researchers discovered that Wnt-5a affects the oocyte's membrane currents, resulting in changes to calcium-dependent currents, membrane depolarization, and alterations in potential and outward potassium currents.
  • - Wnt-5a treatment improved oocyte viability and enhanced germinal vesicle breakdown compared to the control, indicating that Wnt-5a influences oocyte structure and signaling, contributing to a deeper understanding of the Wnt pathway's cellular effects.

Article Abstract

Wnt signaling plays an essential role in cellular processes like development, maturation, and function maintenance. Xenopus laevis oocytes are a suitable model to study not only the development but also the function of different receptors expressed in their membranes, like those receptors expressed in the central nervous system (CNS) including Frizzled 7. Here, using frog oocytes and recordings of endogenous membrane currents in a two-electrode path configuration along with morphological observations, we evaluated the role of the non-canonical Wnt-5a ligand in oocytes. We found that acute application of Wnt-5a generated changes in endogenous calcium-dependent currents, entry oscillatory current, the membrane's outward current, and induced membrane depolarization. The incubation of oocytes with Wnt-5a caused a reduction of the membrane potential, potassium outward current, and protected the ATP current in the epithelium/theca removed (ETR) model. The oocytes exposed to Wnt-5a showed increased viability and an increase in the percentage of the germinal vesicle breakdown (GVBD), at a higher level than the control with progesterone. Altogether, our results suggest that Wnt-5a modulates different aspects of oocyte structure and generates calcium-dependent endogenous current alteration and GVDB process with a change in membrane potential at different concentrations and times of the exposition. These results help to understand the cellular effect of Wnt-5a and present the use of Xenopus oocytes to explore the mechanism that could impact the activation of Wnt signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.150507DOI Listing

Publication Analysis

Top Keywords

endogenous current
8
oocyte structure
8
xenopus laevis
8
wnt signaling
8
receptors expressed
8
outward current
8
membrane potential
8
current
6
oocytes
6
wnt-5a
6

Similar Publications

Background: Fibroblast activation protein (FAP) is an attractive target for cancer theranostics. Although FAP-targeted nuclear imaging demonstrated promising clinical results, only sub-optimal results are reported for targeted radionuclide therapy (TRT). Preclinical research is crucial in selecting promising FAP-targeted radiopharmaceuticals and for obtaining an increased understanding of factors essential for FAP-TRT improvement.

View Article and Find Full Text PDF

Triple-Combination Therapy with a Multifunctional Yolk-Shell Nanozyme Au@CeO Loaded with Dimethyl Fumarate for Periodontitis.

Adv Sci (Weinh)

December 2024

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.

Periodontitis, a chronic inflammatory disease, is the leading cause of tooth loss in adults and is one of the most prevalent and complex oral conditions. Oxidative stress induced by the excessive generation of reactive oxygen species (ROS) leads to periodontitis, which is closely associated with pathological processes, including mitochondrial dysfunction of periodontal cells and local immune dysregulation. However, current treatment modalities that target single pathological processes have limited long-term therapeutic effects.

View Article and Find Full Text PDF

The kingdom of fungi contains highly diverse species. However, fundamental processes sustaining life such as RNA metabolism are much less comparatively studied in Fungi than in other kingdoms. A key factor in the regulation of mRNA expression is the cap-binding protein eIF4E, which plays roles in mRNA nuclear export, storage and translation.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are crucial constituents of inherent immunity and serve as vital components of human host defense, playing a pivotal role in combating invading microbial pathogens. Beyond their antimicrobial functions, AMPs also exhibit various other biological activities including apoptosis induction, wound healing promotion, and immune modulation. These peptides are found in various exposed tissues or surfaces throughout the body, such as eyes, skin, mouth, ears, respiratory tract, lungs, digestive, and urinary system.

View Article and Find Full Text PDF

HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo.

BMC Genomics

December 2024

Departments of Biology and Biomedical Engineering, and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.

Background: STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues.

Results: We describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!