High-efficiency removal of microcystis aeruginosa using Z-scheme AgBr/NH2-MIL-125(Ti) photocatalyst with superior visible-light absorption: Performance insights and mechanisms.

J Hazard Mater

College of Civil Engineering, Fuzhou University, 350116 Fujian, China; College of Environment and Safety Engineering, Fuzhou University, 350116 Fujian, China. Electronic address:

Published: October 2024

Algal blooms have become a widespread concern for drinking water production, threatening ecosystems and human health. Photocatalysis, a promising advanced oxidation process (AOP) technology for wastewater treatment, is considered a potential measure for in situ remediation of algal blooms. However, conventional photocatalysts often suffer from limited visible-light response and rapid recombination of photogenerated electron-hole pairs. In this study, we prepared a Z-scheme AgBr/NH-MIL-125(Ti) composite with excellent visible light absorption performance using co-precipitation to efficiently inactivate Microcystis aeruginosa. The degradation efficiency of AgBr/NH-MIL-125(Ti) for chlorophyll a was 98.7 % after 180 min of visible light irradiation, significantly surpassing the degradation rate efficiency of AgBr and NH-MIL-125(Ti) by factors of 3.20 and 36.75, respectively. Moreover, the removal rate was maintained at 91.1 % even after five times of repeated use. The experimental results indicated that superoxide radicals (•O) were the dominant reactive oxygen species involved. The photocatalytic reaction altered the morphology and surface charge of algal cells, inhibited their metabolism, and disrupted their photosynthetic and antioxidant systems. In conclusion, this study presents a promising material for the application of photocatalytic technology in algal bloom remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135461DOI Listing

Publication Analysis

Top Keywords

microcystis aeruginosa
8
absorption performance
8
algal blooms
8
visible light
8
high-efficiency removal
4
removal microcystis
4
aeruginosa z-scheme
4
z-scheme agbr/nh2-mil-125ti
4
agbr/nh2-mil-125ti photocatalyst
4
photocatalyst superior
4

Similar Publications

The negative effects associated with cyanobacterial blooms are of particular concern in protected ecosystems, as these areas are ecologically significant and attract a high number of visitors. This study aims to explore the cyanobacterial communities and associated toxicity in three reservoirs located within a Mediterranean National Park with a compromised situation at basin-level. Our results demonstrate the occurrence of dense toxic blooms containing microcystins (reaching values close to 280 μg L) and low levels of anatoxin-a and saxitoxins (up to 0.

View Article and Find Full Text PDF

The biochemical composition of sediments, which depends on the origin of the organic matter (OM), is decisive in methane (CH) production. This study aimed to determine the CH produced under anaerobic conditions from different substrates: native reservoir sediments and sediments with the addition of complex OM from Microcystis spp. blooms and terrestrial plants (pasture), alongside the biochemical characterization of the substrates used.

View Article and Find Full Text PDF

Multi-modal learning-based algae phyla identification using image and particle modalities.

Water Res

January 2025

School of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:

Algal blooms in freshwater, which are exacerbated by urbanization and climate change, pose significant challenges in the water treatment process. These blooms affect water quality and treatment efficiency. Effective identification of algal proliferation based on the dominant species is important to ensure safe drinking water and a clean water supply.

View Article and Find Full Text PDF

Inhibition mechanism of Microcystis aeruginosa in coculture of Lemna and Azolla: Insights from non-targeted Metabonomics.

Plant Physiol Biochem

January 2025

College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China. Electronic address:

Microcystis aeruginosa, a harmful alga in cyanobacterial blooms, damages aquatic ecosystems. Species diversity may control the blooms by increasing ecosystem stability and resource utilization. The growth and photosynthetic systems of M.

View Article and Find Full Text PDF

Viruses that infect cyanobacteria are an integral part of aquatic food webs, influencing nutrient cycling and ecosystem health. However, the significance of virus host range, replication efficiency, and host compatibility on cyanobacterial dynamics, growth, and toxicity remains poorly understood. In this study, we examined the effects of cyanophage additions on the dynamics and activity of optimal, sub-optimal, and non-permissive cyanobacterial hosts in cultures of Microcystis aeruginosa and Raphidiopsis raciborskii.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!