The Plasmodium secreted protein with an altered thrombospondin repeat (SPATR) has been known to play an important role in the malaria parasite's invasion into host erythrocytes. This protein is immunogenic and has been considered as one of the potential vaccine candidates against malaria parasite infection. Thus far, only a handful immunological studies have been carried out on P. knowlesi SPATR (PkSPATR), and none of these studies investigated the immunoprotective properties of the protein. In the present study, the ability of anti-PkSPATR antibodies to inhibit invasion of human erythrocytes was assessed in an in vitro merozoite invasion inhibition assay. The antibodies were harvested from the serum of a rabbit which was immunised with recombinat PkSPATR. Results from the merozoite invasion inhibition assay revealed significant antibody invasion inhibitory activity in a concentration dependent manner (concentration range: 0.375 - 3.00 mg/ml) with inhibition rate ranging from 20% to 32%. Future studies, such as anti-PkSPATR antibodies inhibitory effect on sporozoite invasion of human liver cells, need to be carried out to assess the potential of PkSPATR as a knowlesi malaria vaccine candidate.

Download full-text PDF

Source
http://dx.doi.org/10.47665/tb.41.2.009DOI Listing

Publication Analysis

Top Keywords

merozoite invasion
12
invasion human
12
human erythrocytes
8
secreted protein
8
protein altered
8
altered thrombospondin
8
thrombospondin repeat
8
repeat spatr
8
anti-pkspatr antibodies
8
invasion inhibition
8

Similar Publications

parasites have a complex life cycle that transitions between mosquito and mammalian hosts, and undergo continuous cellular remodeling to adapt to various drastic environments. Following hepatocyte invasion, the parasite discards superfluous organelles for intracellular replication, and the remnant organelles undergo extensive branching and mature into hepatic merozoites. Autophagy is a ubiquitous eukaryotic process that permits the recycling of intracellular components.

View Article and Find Full Text PDF

Human liver organoids are susceptible to Plasmodium vivax infection.

Malar J

December 2024

Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.

Background: The eradication of Plasmodium vivax malaria is complicated due to the presence of hypnozoites, the hidden dormant form of the parasite that is present in the liver. Currently available drug regimens are effective at killing hypnozoites but cause side effects and are difficult to administer. Studies testing drugs for liver-stage malaria remain rare and mainly rely on the use of cancerous or immortalized hepatic cells and primary hepatocytes.

View Article and Find Full Text PDF
Article Synopsis
  • * Evidence shows that the invasion process involves manipulating RBC calcium signaling, particularly through the interaction between RH5 and basigin, which leads to increased cAMP and calcium influx in RBCs.
  • * The research highlights a conserved signaling pathway in host RBCs critical for parasite invasion and suggests new targets for therapeutic interventions against merozoite invasion.
View Article and Find Full Text PDF

New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. In this manuscript we characterize 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv-exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target.

View Article and Find Full Text PDF
Article Synopsis
  • PfRh5 has shown promise as a malaria vaccine candidate due to its key role in merozoite invasion and overall stability, with recent trials indicating its safety and effectiveness.
  • A study was conducted in Tanzanian regions known for high malaria transmission to assess genetic variation and immune responses to PfRh5 in asymptomatic carriers, revealing some new mutations but overall genetic conservation.
  • Results indicated variable immune response sensitivity tied to age, with the findings highlighting the importance of ongoing monitoring of vaccine efficacy and antigenic variation to improve malaria vaccine development.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!