The present paper provides the first integrative assessment of the capacity of dietary, endogenous and other agents to induce hormetic dose responses in oocytes, their supportive cells such as granulosa cells, blastocyst formation and early stage embryo development with the goal of improving fertility and reproductive success. The analysis showed that numerous agents enhance oocyte maturation and blastocyst/embryonic development in an hormetic fashion. These findings indicate that numerous agents improve oocyte-related biological functioning under normal conditions as well as enhancing its capacity to prevent damage from numerous chemical toxins and related stressor agents, including heat and age-related processes in pre-post conditioning and concurrent exposures. The present assessment suggests that hormetic-based lifestyles and dietary interventions may offer the potential to enhance healthy reproductive performance with applications to animal husbandry and human biology. The present findings also significantly extend the generality of the hormesis dose response concept to multiple fundamental biological processes (i.e., oocyte maturation, fertilization and blastocyst/embryo development).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2024.114941 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Woolcock Institute for Medical Research, University of Technology, Sydney, NSW, Australia.
Introduction: It is well acknowledged that lipids assume a critical role in oocyte maturation and early embryonic metabolism, this study aimed to evaluate the relationship between the lipid composition of plasma and follicular fluid (FF), and the consequences of embryonic development. This study compared the lipidomic profiles of paired plasma and FF samples obtained from sixty-five Chinese women who underwent assisted reproductive technology (ART) treatments.
Methods: Non-targeted lipidomics analysis.
Histol Histopathol
December 2024
Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Türkiye.
Diabetes mellitus (DM) causes numerous systemic diseases in animals and humans. This may also lead to reproductive problems among individuals of reproductive age. Detrimental effects such as apoptosis in ovarian granulosa cells, degradation of communication proteins, decreased oocyte quality, delayed meiotic maturation, and atrophy are among the increasing evidence that chronic hyperglycemia causes reproductive problems.
View Article and Find Full Text PDFAging Cell
January 2025
The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
The decline of oocyte quality with advanced maternal age has a detrimental effect on female fertility. However, there is limited knowledge of therapeutic options and their mechanisms to improve oocyte quality in reproductively older women. In this study, we demonstrated that supplementation of salidroside improves the oocyte quality of reproductively old mice.
View Article and Find Full Text PDFLife Sci
January 2025
Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea; Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea. Electronic address:
Telomerase is highly expressed in oocyte cumulus cells and plays a significant role in follicular development and oocyte maturation. In this study, we hypothesized that in vitro culture conditions may affect telomerase activity during in vitro embryo production (IVP) and that its activation may improve embryo quality. We first examined telomerase protein levels and localization in bovine cumulus-oocyte complexes via immunofluorescence assays.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China. Electronic address:
The use of Bisphenol A (BPA) has been widely restricted due to its adverse health effects. Bisphenol Z (BPZ) is used as an alternative to BPA, and humans are widely exposed to BPZ through various routes. Recent studies have shown that BPZ exposure adversely affects mouse oocyte meiotic maturation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!