Lipiodol emulsion as a dual chemoradiation-sensitizer for pancreatic cancer treatment.

J Control Release

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: October 2024

Pancreatic ductal adenocarcinoma (PDAC) has a low survival rate and limited treatment options. Concurrent chemoradiotherapy is considered beneficial to improve tumor control, but the low drug bioavailability at tumor site and the low radiation tolerance of surrounding healthy organs greatly limits its effectiveness. Lipiodol, a natural drug carrier used in clinical transarterial chemoembolization, has shown potential as a radiosensitizer due to its high Z element iodine composition. Thus, this study aims to repurpose lipiodol as a sensitizer to simultaneously enhance chemo- and radiotherapy for PDAC. To this end, a stable lipiodol emulsion (IOE) loaded with gemcitabine is designed using clinically approved surfactants. At in vivo level, IOE demonstrates better radiotherapeutic effect than existing nanoradiosensitizers and enhanced drug bioavailability over free drug, leading to significant tumor inhibition and improved survival rates under concurrent chemo-radiotherapy. This may due to the sustained drug release, homogenous spatial distribution, and long-term retention ability of IOE in solid PDAC tumor. Furthermore, to better understand the functioning mechanism of drug-loaded IOE, in vitro study is conducted to reveal the ROS- and DNA damage-related therapeutic pathways. Lastly, a comprehensive toxicity assessment also proves the good biocompatibility and safety of as-prepared IOE. This study offers a clinically feasible sensitizer for simultaneous chemoradiotherapy and holds potential for other types of cancer treatment in clinics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2024.08.020DOI Listing

Publication Analysis

Top Keywords

lipiodol emulsion
8
cancer treatment
8
drug bioavailability
8
drug
5
ioe
5
lipiodol
4
emulsion dual
4
dual chemoradiation-sensitizer
4
chemoradiation-sensitizer pancreatic
4
pancreatic cancer
4

Similar Publications

Pickering emulsion with tumor vascular destruction and microenvironment modulation for transarterial embolization therapy.

Biomaterials

May 2025

Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China; National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210009, China. Electronic address:

In the clinic, Lipiodol chemotherapeutic emulsions remain a main choice for patients diagnosed with hepatocellular carcinoma (HCC) via the mini-invasive transarterial chemoembolization (TACE) therapy. However, the poor stability of conventional Lipiodol chemotherapeutic emulsions would result in the fast drug diffusion and incomplete embolization, inducing systemic toxicity and impairing the efficacy of TACE therapy. Therefore, it is of great importance to construct alternative formulations based on commercial Lipiodol to achieve the improved efficacy and safety of HCC treatment.

View Article and Find Full Text PDF

Arginine-Loaded Nano-Calcium-Phosphate-Stabilized Lipiodol Pickering Emulsions Potentiates Transarterial Embolization-Immunotherapy.

Adv Sci (Weinh)

December 2024

Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.

Transarterial chemoembolization (TACE) continues to stand as a primary option for treating unresectable hepatocellular carcinoma (HCC). However, the increased tumor hypoxia and acidification will lead to the immunosuppressive tumor microenvironment (TME) featuring exhausted T cells, limiting the effectiveness of subsequent therapies following TACE. Herein, a stable water-in-oil lipiodol Pickering emulsion by employing calcium phosphate nanoparticles (CaP NPs) as stabilizers is developed and used to encapsulate L-arginine (L-Arg), which is known for its ability to modulate T-cell metabolism.

View Article and Find Full Text PDF

A Lipiodol Pickering Emulsion Stabilized by Iron-Doped Carbon Nanozymes for Liver Transarterial Chemoembolization.

Adv Sci (Weinh)

December 2024

Department of Interventional Center, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, P. R. China.

Transarterial chemoembolization (TACE) utilizing a water-in-oil lipiodol emulsion is a preferable therapeutic strategy for advanced liver cancer in clinical practice. However, the low stability of the lipiodol emulsion and poor efficacy of chemotherapeutic drug seriously undermine the efficiency of TACE. Herein, a novel lobaplatin-loaded lipiodol emulsion (denoted as ICN-LPE) is developed by constructing a lipiodol Pickering emulsion (LPE) stabilized with iron-doped carbon nanozymes (ICN) to mitigate the issue of lipiodol-water separation.

View Article and Find Full Text PDF

Background & Aims: Optimizing transarterial chemoembolization (TACE) can enhance treatment efficacy for hepatocellular carcinoma (HCC). This study compares modified TACE (M-TACE), which combines a lipiodol-based emulsion and drug-eluting beads, with drug-eluting bead TACE (DEB-TACE) as initial therapies for solitary HCC.

Methods: In this retrospective study, 185 patients undergoing M-TACE or DEB-TACE were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!