Ischemic heart failure rates rise despite decreased acute myocardial infarction (MI) mortality. Excessive myofibroblast activation post-MI leads to adverse remodeling. LIM kinases (LIMK1 and LIMK2) regulate cytoskeleton homeostasis and are pro-fibrotic markers in atrial fibrillation. However, their roles and mechanisms in postinfarction fibrosis and ventricular remodeling remain unclear. This study found that the expression of LIMKs elevated in the border zone (BZ) in mice MI models. LIMK1/2 double knockout (DKO) restrained pathological remodeling and reduced mortality by suppressing myofibroblast activation. By using adeno-associated virus (AAV) with a periostin promoter to overexpress LIMK1 or LIMK2, this study found that myofibroblast-specific LIMK2 overexpression diminished these effects in DKO mice, while LIMK1 did not. LIMK2 kinase activity was critical for myofibroblast proliferation by using AAV overexpressing mutant LIMK2 lack of kinase activity. According to phosphoproteome analysis, functional rescue experiments, co-immunoprecipitation, and protein-protein docking, LIMK2 led to the phosphorylation of β-catenin at Ser 552. LIMK2 nuclear translocation also played a role in myofibroblast proliferation after MI with the help of AAV overexpressing mutant LIMK2 without nuclear location signal. Chromatin immunoprecipitation sequencing identified that LIMK2 bound to Lrp6 promoter region in TGF-β treated cardiac fibroblasts, positively regulating Wnt signaling via Wnt receptor internalization. This study demonstrated that LIMK2 promoted myofibroblast proliferation and adverse cardiac remodeling after MI, by enhancing phospho-β-catenin (Ser552) and Lrp6 signaling. This suggested that LIMK2 could be a target for the treatment of postinfarction injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2024.107347 | DOI Listing |
Front Physiol
December 2024
NextGen Precision Health, University of Missouri, Columbia, MO, United States.
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health.
View Article and Find Full Text PDFJ Med Chem
January 2025
Medicines Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
LIMKs are serine/threonine and tyrosine kinases responsible for controlling cytoskeletal dynamics as key regulators of actin stability, ensuring synaptic health through normal synaptic bouton structure and function. However, LIMK1 overactivation results in abnormal dendritic synaptic development that characterizes the pathogenesis of Fragile X Syndrome (FXS). As a result, the development of LIMK inhibitors represents an emerging disease-modifying therapeutic approach for FXS.
View Article and Find Full Text PDFBioessays
January 2025
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
The LIM domain kinases (LIMKs) are important actin cytoskeleton regulators. These proteins, LIMK1 and LIMK2, are nodes downstream of Rho GTPases and are the key enzymes that phosphorylate cofilin/actin depolymerization factors to regulate filament severing. They therefore perform an essential role in cascades that control actin depolymerization.
View Article and Find Full Text PDFPharmacol Res
October 2024
Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China; Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China. Electronic address:
Ischemic heart failure rates rise despite decreased acute myocardial infarction (MI) mortality. Excessive myofibroblast activation post-MI leads to adverse remodeling. LIM kinases (LIMK1 and LIMK2) regulate cytoskeleton homeostasis and are pro-fibrotic markers in atrial fibrillation.
View Article and Find Full Text PDFEur J Med Chem
May 2024
ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France. Electronic address:
LIM Kinases, LIMK1 and LIMK2, have become promising targets for the development of inhibitors with potential application for the treatment of several major diseases. LIMKs play crucial roles in cytoskeleton remodeling as downstream effectors of small G proteins of the Rho-GTPase family, and as major regulators of cofilin, an actin depolymerizing factor. In this article we describe the conception, synthesis, and biological evaluation of novel tetrahydropyridine pyrrolopyrimidine LIMK inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!