Industrial lignin is a waste product of the paper industry, which contains a large amount of oxygen group structure, and can be used to treat industrial wastewater containing Cr(VI). However, lignin has very low reactivity, so how to enhance its adsorption performance is a major challenge at present. In this study, a two-stage hydrothermal and activation strategy was used to activate the lignin activity and doping S element to prepare high-performance S-doped lignin-based polyporous carbon (S-LPC). The results show that the surface of S-LPC is rich in S and O groups and has a well-developed pore structure, which is very beneficial to Cr(VI) uptake -reduction and mass transfer on the material. In the wastewater, the utmost adsorption potential of Cr(VI) by S-LPC achieved 882.83 mg/g. After 7 cycles of regeneration, the adsorption of S-LPC decreased by only approximately 18 %. Ion competition experiments showed that S-LPC has excellent specificity for Cr(VI) adsorption. In factory wastewater, the adsorption performance of S-LPC for Cr(VI) remained above 95 %, which shows the excellent performance of S-LPC in practical applications. The results are of great significance for green chemical utilization of waste lignin, treatment of industrial wastewater and sustainable development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134765 | DOI Listing |
Biomacromolecules
January 2025
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
Silk fibroin (SF) hydrogel has been proven to have excellent applications in the field of pressure sensors, but its sensing performance still needs improvement. A flexible hydrogel prepared from natural macromolecular materials was developed, and lignin nanoparticles (LNPs) were introduced during the preparation of the SF hydrogel. When LNPs account for 3% of SF, the sensing unit of the SF-LNPs hydrogel exhibits high stress sensitivity (1.
View Article and Find Full Text PDFEnviron Res
January 2025
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.
Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying 257335, China.
In this study, the response surface methodology was first utilized to optimize the enzyme treatment conditions as reaction pH, temperature, time and enzyme dosage of 9.5, 45 °C, 94.5 min and 100 U/L.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
Sutures from natural and synthetic materials are utilized to close wounds, stop bleeding, reduce pain and infection, repair cutaneous wounds, minimize scarring, and promote optimal wound healing. We used mechanical and chemical methods to extract cellulose fibers from cylindrical snake grass (Dracaena angolensis) (Welw. ex Carrière) Byng & Christenh.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!