Soil microbial communities are major drivers of cycling of soil nutrients that sustain plant growth and productivity. Yet, a holistic understanding of the impact of abandoned agricultural land reclamation on the soil microbe is still poorly understood, especially for the microbial community assembly mechanisms. Here, we investigated the influence of reclamation on the relative importance of stochastic and deterministic processes in shaping microbial community assembly. After reclaiming abandoned cropland for corn and soybean cultivation, the fungal community assembly was shifted to stochastic processes, while bacterial communities remained predominantly influenced by stochastic processes. Our study revealed that reclamation did not significantly affect bacterial diversity, community niche breadth, and community similarity. In contrast, fungal communities exhibited lower alpha diversity, narrower niche breadths, greater niche overlap and higher community similarity in corn and soybean cultivation treatment in response to reclamation. Moreover, soil pH and soil available phosphorus were the most important environmental factors influencing fungal richness, niche breadths, community assembly processes, and community similarity. Together, the reclamation of abandoned cropland promoted the transformation of the fungal community assembly from deterministic process to a stochastic process, leading to decreased fungal diversity and broader ecological niche width, ultimately resulting in greater similarity among fungal communities. This finding provides insight into the varied responses of microbial diversity and ecological process to abandoned cropland reclamation, offering valuable guidance for the conservation and sustainable management of abandoned cropland in future land-use practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175494 | DOI Listing |
J Basic Microbiol
January 2025
School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China.
Subsidence from coal mining is a major environmental issue, causing significant damage to soil structure. Soil microorganisms, highly sensitive to environmental changes, adapt accordingly. This study focused on four areas of the Burdai coal mine: a non-subsidence area (CK), half-yearly (HY), 1-year (OY), and 2-year (TY) subsidence areas.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
The relationship of plant diversity and several ecosystem functions strengthens over time. This suggests that the restructuring of biotic interactions in the process of a community's assembly and the associated changes in function differ between species-rich and species-poor communities. An important component of these changes is the feedback between plant and soil community history.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
Background: The burden of Clostridioides difficile as a nosocomial- and community-acquired pathogen has been increasing over the recent decades, including reports of severe outbreaks. Molecular and virulence genotyping are central for the epidemiological surveillance of this pathogen, but need to balance accuracy and rapid turnaround time of the results. While Illumina short-read sequencing has been adopted as the gold standard to investigate C.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China. Electronic address:
Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, Mount Allison University, Sackville, NB, Canada.
The re-emergence of episodic faecal contamination of Parlee and Murray Corner beaches, on the Northumberland Strait of New Brunswick, Canada, in 2017, raised renewed community concerns on the health, environmental and tourism sustainability of these community resources, and led to creation of an Integrated Watershed Management Plan for the Shediac Bay Watershed (October 2021). In response we have to date compiled, curated and made accessible 205,772 microbial water quality data records spanning over 80 years from Southeastern New Brunswick and the Northumberland Strait. This dataset derives in large part from Shellfish Surveys completed by Environment and Climate Change Canada, along with data generated by multiple government agencies, Non-Governmental Organizations and citizen science sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!