Disturbance alters soil organic carbon content and stability in Carex tussock wetland, Northeast China.

Sci Total Environ

Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, PR China; College of Geography and Ocean Sciences, Yanbian University, Yanji, Jilin 133000, PR China.

Published: November 2024

With the intensification of climate change and human activities, wetland ecosystem and their carbon pool function have been seriously compromised. To determine the soil organic carbon pool composition and stability response to wetland disturbance, three disturbed (grazing, mowing, invasion) and two undisturbed Carex tussock wetlands were investigated in Momoge Wetland, northeast China. The results showed that the disturbance significantly reduced the soil organic carbon content under hummock, but effectively promoted organic carbon storage in surface soil in hummock interspace. In disturbed wetlands, relative abundance of aromatic-C, asymmetric aliphatic-C, polysaccharide-C and clay minerals, and organic carbon stability significantly declined. Furthermore, asymmetric aliphatic-C and polysaccharide-C were the most important organic carbon chemical components affecting SOC stability under hummock and in hummock interspace. Disturbance facilitated the effects of pH, TP and minerals on organic carbon stability, with pH being the most important. These findings improved our understanding of the composition and stability of carbon pools in disturbed wetlands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175417DOI Listing

Publication Analysis

Top Keywords

organic carbon
28
soil organic
12
carbon
9
carbon content
8
carex tussock
8
wetland northeast
8
northeast china
8
carbon pool
8
composition stability
8
hummock interspace
8

Similar Publications

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Vegetation restoration can be effective in containing gully head advance. However, the effect of vegetation restoration type on soil aggregate stability and erosion resistance at the head of the gully is unclear. In this study, five types of vegetation restoration-Pinus tabulaeformis (PT), Prunus sibirica (PS), Caragana korshinskii (CKS), Hippophae rhamnoides (HR), and natural grassland (NG, the dominant species is Leymus chinensis)-in the gully head were studied.

View Article and Find Full Text PDF

A biohydrogen and polyhydroxyalkanoates(PHA)-producing natural photoheterotrophic mixed culture composed mainly by Rhodopseudomonas palustris and Clostridium sp was studied by a proteomic analysis under non-growth conditions (nitrogen-absence and organic acids). Proteins in C. pasteurianum were upregulated, particularly those related to stress response.

View Article and Find Full Text PDF

Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.

View Article and Find Full Text PDF

Evaluating the performance and stability of microalgal-bacterial granular sludge in municipal wastewater treatment plants.

J Environ Manage

December 2024

Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China. Electronic address:

The microalgal-bacterial granular sludge (MBGS) process shows potential for carbon-neutral wastewater treatment, yet its application in wastewater treatment plants remains underexplored. This study attempted to use a continuous-flow raceway reactor to treat real municipal wastewater using the MBGS process. The results showed that the removal efficiencies of organics peaked on the fifth day, while declining trends were observed for nitrogen and phosphorus removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!