Understanding mechanisms of ageing remains a complex challenge for biogerontologists, but recent adaptations of evolutionary ageing theories offer a compelling lens in which to view both age-related molecular and physiological deterioration. Ageing is commonly associated with progressive declines in biochemical and molecular processes resulting from damage accumulation, yet the role of continued developmental gene activation is less appreciated. Natural selection pressures are at their highest in youthful periods to modify gene expression towards maximising reproductive capacity. After sexual maturation, selective pressure diminishes, subjecting individuals to maladaptive pleiotropic gene functions that were once beneficial for developmental growth but become pathogenic later in life. Due to this selective 'shadowing' in ageing, mechanisms to counter such hyper/hypofunctional genes are unlikely to evolve. Interventions aimed at targeting gene hyper/hypofunction during ageing might, therefore, represent an attractive therapeutic strategy. The nematode Caenorhabditis elegans offers a strong model for post-reproductive mechanistic and therapeutic investigations, yet studies examining the mechanisms of, and countermeasures against, ageing decline largely intervene from larval stages onwards. Importantly, however, lifespan extending conditions frequently impair early-life fitness and fail to correspondingly increase healthspan. Here, we consolidate multiple evolutionary theories of ageing and discuss data supporting hyper/hypofunctional changes at a global molecular and functional level in C. elegans, and how classical lifespan-extension mutations alter these dynamics. The relevance of such mutant models for exploring mechanisms of ageing are discussed, highlighting that post-reproductive gene optimisation represents a more translatable approach for C. elegans research that is not constrained by evolutionary trade-offs. Where some genetic mutations in C. elegans that promote late-life health map accordingly with healthy ageing in humans, other widely used genetic mutations that extend worm lifespan are associated with life-limiting pathologies in people. Lifespan has also become the gold standard for quantifying 'ageing', but we argue that gerospan compression (i.e., 'healthier' ageing) is an appropriate goal for anti-ageing research, the mechanisms of which appear distinct from those regulating lifespan alone. There is, therefore, an evident need to re-evaluate experimental approaches to study the role of hyper/hypofunctional genes in ageing in C. elegans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arr.2024.102456 | DOI Listing |
JAMA Netw Open
December 2024
Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, United Kingdom.
Importance: Issues related to social connection are increasingly recognized as a global public health priority. However, there is a lack of a holistic understanding of social connection and its health impacts given that most empirical research focuses on a single or few individual concepts of social connection.
Objective: To explore patterns of social connection and their associations with health and well-being outcomes.
Sports Med Open
December 2024
Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia.
Background: Handgrip strength (HGS) is an excellent marker of general strength capacity and health among adults. We aimed to calculate temporal trends in HGS for adults from Shanghai between 2000 and 2020.
Methods: Adults aged 20-59 years from Shanghai, China, were included.
Phys Rev Lett
December 2024
Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
We investigate the aging properties of phase-separation kinetics following quenches from T=∞ to a finite temperature below T_{c} of the paradigmatic two-dimensional conserved Ising model with power-law decaying long-range interactions ∼r^{-(2+σ)}. Physical aging with a power-law decay of the two-time autocorrelation function C(t,t_{w})∼(t/t_{w})^{-λ/z} is observed, displaying a complex dependence of the autocorrelation exponent λ on σ. A value of λ=3.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.
Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.
View Article and Find Full Text PDFGeroscience
December 2024
Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy.
The aim of the present study is to investigate differences in brain networks modulation during the pre- and post-sleep onset period, both within and between two groups of young and older individuals. Thirty-six healthy elderly and 40 young subjects participated. EEG signals were recorded during pre- and post-sleep onset periods and functional connectivity analysis, specifically focusing on the small world (SW) index, applied to EEG data (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!