Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Concurrent heavy metals remediation in natural environments poses significant challenges due to factors like metal speciation and interactions with soil moisture. This review focuses on strategies for immobilizing both anionic and cationic metals simultaneously in soil-crop systems. Key approaches include water management, biochar utilization, stabilizing agents, nanotechnology, fertilization, and bioremediation. Sprinkler or intermittent irrigation combined with soil amendments/biochar effectively immobilizes As/Cd/Pb simultaneously. This immobilization occurs through continuous adsorption-desorption, oxidation-reduction, and precipitation mechanisms influenced by soil pH, redox reactions, and Fe-oxides. Biochar from sources like wine lees, sewage sludge, spent coffee, and Fe-nanoparticles can immobilize As/Cd/Pb/Cr/Co/Cu/Zn together via precipitation. In addition, biochar from rice, wheat, corn straw, rice husk, sawdust, and wood chips, modified with chemicals or nanoparticles, simultaneously immobilizes As and Cd, containing higher FeO, Fe-oxide, and OH groups. Ligand exchange immobilizes As, while ion exchange immobilizes Cd. Furthermore, combining biochar especially with iron, hydroxyapatite, magnetite, goethite, silicon, graphene, alginate, compost, and microbes-can achieve simultaneous immobilization. Other effective amendments are selenium fertilizer, Ge-nanocomposites, Fe-Si materials, ash, hormone, and sterilization. Notably, combining nano-biochar with microbes and/or fertilizers with Fe-containing higher adsorption sites, metal-binding cores, and maintaining a neutral pH could stimulate simultaneous immobilization. The amendments have a positive impact on soil physio-chemical improvement and crop development. Crops enhance production of growth metabolites, hormones, and xylem tissue thickening, forming a protective barrier by root Fe-plaque containing higher Fe-oxide, restricting upward metal movement. Therefore, a holistic immobilization mechanism reduces plant oxidative damage, improves soil and crop quality, and reduces food contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!