Biocompatibility and osteogenic capacity of additively manufactured biodegradable porous WE43 scaffolds: An in vivo study in a canine model.

Biomater Adv

OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium. Electronic address:

Published: November 2024

Magnesium is the most promising absorbable metallic implant material for bone regeneration and alloy WE43 is already FDA approved for cardiovascular applications. This study investigates the cyto- and biocompatibility of novel additively manufactured (AM) porous WE43 scaffolds as well as their osteogenic potential and degradation characteristics in an orthotopic canine bone defect model. The cytocompatibility was demonstrated using modified ISO 10993-conform extract-based indirect and direct assays, respectively. Additionally, degradation rates of WE43 scaffolds were quantified in vitro prior to absorption tests in vivo. Complete blood cell counts, blood biomarker analyses, blood trace element analyses as well as multi-organ histopathology demonstrated excellent biocompatibility of porous y WE43 scaffolds for bone defect repair. Micro-CT analyses further showed a relatively higher absorption rate during the initial four weeks upon implantation (i.e., 36 % ± 19 %) than between four and 12 weeks (41 % ± 14 %), respectively. Of note, the porous WE43 implants were surrounded by newly formed bony tissue as early as four weeks after implantation when unmineralized trabecular ingrowth was detected. After 12 weeks, a substantial amount of mineralized bone was detected inside and around the gradually disappearing implants. This first study on AM porous WE43 implants in canine bone defects demonstrates the potential of this alloy for in vivo applications in humans. Our data further underscore the need to control initial bulk absorption kinetics through surface modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2024.213984DOI Listing

Publication Analysis

Top Keywords

porous we43
20
we43 scaffolds
16
additively manufactured
8
canine bone
8
bone defect
8
weeks implantation
8
we43 implants
8
we43
7
porous
5
bone
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!