Epigenetic modifications of inflammation in spinal cord injury.

Biomed Pharmacother

Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China. Electronic address:

Published: October 2024

Spinal cord injury (SCI) is a central nervous system injury that leads to neurological dysfunction or paralysis, which seriously affects patients' quality of life and causes a heavy social and economic burden. The pathological mechanism of SCI has not been fully revealed, resulting in unsatisfactory clinical treatment. Therefore, more research is urgently needed to reveal its precise pathological mechanism. Numerous studies have shown that inflammation is closely related to various pathological processes in SCI. Inflammatory response is an important pathological process leading to secondary injury, and sustained inflammatory response can exacerbate the injury and hinder the recovery of neurological function after injury. Epigenetic modification is considered to be an important regulatory mechanism in the pathological process of many diseases. Epigenetic modification mainly affects the function and characteristics of genes through the reversibility of mechanisms such as DNA methylation, histone modification, and regulation of non-coding RNA, thus having a significant impact on the pathological process of diseases and the survival state of the body. Recently, the role of epigenetic modification in the inflammatory response of SCI has gradually entered the field of view of researchers, and epigenetic modification may be a potential means to treat SCI. In this paper, we review the effects and mechanisms of different types of epigenetic modifications (including histone modifications, DNA methylation, and non-coding RNAs) on post-SCI inflammation and their potential therapeutic effects on inflammation to improve our understanding of the secondary SCI stage. This review aims to help identify new markers, signaling pathways and targeted drugs, and provide theoretical basis and new strategies for the diagnosis and treatment of SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117306DOI Listing

Publication Analysis

Top Keywords

epigenetic modification
16
inflammatory response
12
pathological process
12
epigenetic modifications
8
spinal cord
8
cord injury
8
pathological mechanism
8
process diseases
8
dna methylation
8
sci
7

Similar Publications

Background: Recent studies have highlighted the role of RNA modification, that is, the dysregulation of epitranscriptomics, in tumorigenesis and progression. The potential for undoing epigenetic changes may develop novel therapeutic and prognostic approaches. However, the roles of these RNA modifications in the tumor microenvironment (TME) are still unknown.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Nanopore RNA direct sequencing identifies that mA modification is essential for sorbitol-controlled resistance to Alternaria alternata in apple.

Dev Cell

January 2025

State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China. Electronic address:

Sorbitol, a main photosynthate and transport carbohydrate in all tree fruit species in Rosaceae, acts as a signal controlling resistance against Alternaria (A.) alternata in apple by altering the expression of the MdNLR16 resistance gene via the MdWRKY79 transcription factor. However, it is not known if N-methyladenosine (mA) methylation of the mRNAs of these genes participates in the process.

View Article and Find Full Text PDF

The analysis of cell-free tumor DNA (ctDNA) and proteins in the blood of patients with cancer potentiates a new generation of non-invasive diagnostic approaches. However, confident detection of tumor-originating markers is challenging, especially in the context of brain tumors, where these analytes in plasma are extremely scarce. Here, we apply a sensitive single-molecule technology to profile multiple histone modifications on individual nucleosomes from the plasma of patients with diffuse midline glioma (DMG).

View Article and Find Full Text PDF

Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation.

Biomed Pharmacother

January 2025

Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China. Electronic address:

The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!