Influence of suspended particulate matters on P dynamics and eutrophication in the highly turbid estuary: A case study in Hangzhou Bay, China.

Mar Pollut Bull

Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan 316021, China; Key laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China. Electronic address:

Published: October 2024

AI Article Synopsis

  • Phosphorus (P) is vital for ecosystems, but human activities can cause either too much or too little in coastal waters, leading to ecological problems like eutrophication and algal blooms.
  • In Hangzhou Bay, a study revealed that particulate phosphorus (PTP) levels were significantly higher than dissolved inorganic phosphorus (DIP), influenced by seasonal sediment resuspension and regional variations.
  • The research found that fine-grained suspended particulate matter (SPM) contained 3000 tons of bioavailable P, which can contribute to harmful algal blooms, emphasizing the need to understand P dynamics in turbid coastal waters for better management of eutrophication.

Article Abstract

Phosphorus (P) is an essential biogenic element in ecosystems; but excessive or insufficient P in coastal waters caused by human activities has led to serious ecological issues. However, the understanding of the dynamic processes of different P forms in high turbidity estuaries/bays, as well as their impact on eutrophication and coastal algal blooms, is still relatively limited. To address this issue, we analyzed P dynamics and their impact on eutrophication in Hangzhou Bay (HZB), which is typical of eutrophic and turbid bay worldwide. The concentration of particulate P (PTP) was 3-5 times higher than that of dissolved inorganic phosphorus (DIP). Seasonal sediment resuspension led to the accumulation of suspended particulate matter (SPM) and PTP with regional variation, both maintaining DIP concentrations above 1 μmol/L within the bay. Furthermore, 3000 tons of bioavailable P were retained in the fine-grained SPM, with the potential for outward transport, fueling subsequent harmful algal blooms. A comparative analysis of global coastal waters highlighted that different turbidity levels significantly affect P cycling. Therefore, understanding the relationship between SPM and P in highly turbid waters is crucial for effective management of eutrophication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.116793DOI Listing

Publication Analysis

Top Keywords

suspended particulate
8
highly turbid
8
hangzhou bay
8
coastal waters
8
impact eutrophication
8
algal blooms
8
influence suspended
4
particulate matters
4
matters dynamics
4
eutrophication
4

Similar Publications

Purpose: The purpose of this study is to present a correlative microscopy-tomography approach in conjunction with machine learning-based image segmentation techniques, with the goal of enabling quantitative structural and compositional elucidation of real-world pharmaceutical tablets.

Methods: Specifically, the approach involves three sequential steps: 1) user-oriented tablet constituent identification and characterization using correlative mosaic field-of-view SEM and energy dispersive X-ray spectroscopy techniques, 2) phase contrast synchrotron X-ray micro-computed tomography (SyncCT) characterization of a large, representative volume of the tablet, and 3) constituent segmentation and quantification of the imaging data through user-guided, iterative supervised machine learning and deep learning.

Results: This approach was implemented on a real-world tablet containing 15% API and multiple common excipients.

View Article and Find Full Text PDF

The characterization of tunnel wash water (TWW) from 12 Norwegian tunnels showed very high concentrations of total suspended solids (TSS), metals, and polycyclic aromatic hydrocarbons (PAHs). Iron (Fe), aluminum (Al), and manganese (Mn) were mainly particle-associated. They are efficiently removed by sedimentation, while the dissolved concentrations of toxic metals like Cu, Zn, and As did not change.

View Article and Find Full Text PDF

Prevalence of lipophilic phycotoxins with different forms in the benthic environments of a typical mariculture bay.

Mar Environ Res

December 2024

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.

Lipophilic phycotoxins (LPTs) are toxic and lipophilic secondary metabolites produced by toxic microalgae, which pose a serious threat to marine shellfish culture industries. LPTs were systematically investigated in bottom seawater, suspended particulate matter (SPM), sediment, and sediment porewater of Laizhou Bay, a typical mariculture bay in China, to understand the chemical diversity and environment behaviors of LPTs in the benthic environments. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), azaspiracid-2 (AZA2), gymnodimine (GYM), pectenotoxin-2 seco acid (PTX2 SA), 7-epi- pectenotoxin-2 seco acid (7-epi-PTX2 SA), 13-desmethylspirolide C (SPX1), yessotoxin (YTX) and homo YTX (h-YTX) were detected in the benthic environment of Laizhou Bay in spring, indicating that LPTs are rich in chemical diversity.

View Article and Find Full Text PDF

Distribution characteristics of Hg and As in the water-SPM system in the Xiaoqing river estuary and coastal.

Mar Environ Res

December 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China. Electronic address:

Water and suspended particulate matter (SPM) were collected from Xiaoqing Estuary and its adjacent waters in August 2022 to study the spatial distribution and risk assessment of Hg and As. The content of Hg in SPM samples ranged from 4.7152 to 446.

View Article and Find Full Text PDF

A holistic study on the effects of a rural flood detention basin: Flood peaks, water quality and grass growth.

J Environ Manage

December 2024

School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, Ellen Hutchins Building, University College Cork, Cork, Ireland.

Nature-based Solutions (NbS) are widely advocated to have multiple benefits, including in flood risk reduction, water quality improvement and ecosystem health. There are, however, few empirical studies quantifying such multi-functionality. Given the ongoing pressures of flooding and poor water quality within Europe, there is an urgent need for empirical evidence to assess the potential for NbS features to address these issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!