Composite hydrogels assembled from food-grade biopolymers: Fabrication, properties, and applications.

Adv Colloid Interface Sci

Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA. Electronic address:

Published: October 2024

AI Article Synopsis

Article Abstract

Biopolymer hydrogels have a broad range of applications as soft materials in a variety of commercial products, including foods, cosmetics, agrochemicals, personal care products, pharmaceuticals, and biomedical products. They consist of a network of entangled or crosslinked biopolymer molecules that traps relatively large quantities of water and provides semi-solid properties, like viscoelasticity or plasticity. Composite biopolymer hydrogels contain inclusions (fillers) to enhance their functional properties, including solid particles, liquid droplets, gas bubbles, nanofibers, or biological cells. These fillers vary in their composition, size, shape, rheology, and surface properties, which influences their impact on the rheological properties of the biopolymer hydrogels. In this article, the various types of biopolymers used to fabricate composite hydrogels are reviewed, with an emphasis on edible proteins and polysaccharides from sustainable sources, such as plants, algae, or microbial fermentation. The different kinds of gelling mechanism exhibited by these biopolymers are then discussed, including heat-, cold-, ion-, pH-, enzyme-, and pressure-set mechanisms. The different ways that biopolymer molecules can organize themselves in single and mixed biopolymer hydrogels are then highlighted, including polymeric, particulate, interpenetrating, phase-separated, and co-gelling systems. The impacts of incorporating fillers on the rheological properties of composite biopolymer hydrogels are then discussed, including mathematical models that have been developed to describe these effects. Finally, potential applications of composite biopolymer hydrogels are presented, including as delivery systems, packaging materials, artificial tissues, wound healing materials, meat analogs, filters, and adsorbents. The information provided in this article is intended to stimulate further research into the development and application of composite biopolymer hydrogels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2024.103278DOI Listing

Publication Analysis

Top Keywords

biopolymer hydrogels
28
composite biopolymer
16
biopolymer
9
composite hydrogels
8
hydrogels
8
biopolymer molecules
8
rheological properties
8
discussed including
8
composite
6
properties
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!