Recent clinical studies have reported that heart failure with preserved ejection fraction (HFpEF) can be divided into two phenotypes based on the range of ejection fraction (EF), namely HFpEF with higher EF and HFpEF with lower EF. These phenotypes exhibit distinct left ventricle (LV) remodelling patterns and dynamics. However, the influence of LV remodelling on various LV functional indices and the underlying mechanics for these two phenotypes are not well understood. To address these issues, this study employs a coupled finite element analysis (FEA) framework to analyse the impact of various ventricular remodelling patterns, specifically concentric remodelling (CR), concentric hypertrophy (CH), and eccentric hypertrophy (EH), with and without LV wall thickening on LV functional indices. Further, the geometries with a moderate level of remodelling from each pattern are subjected to fibre stiffening and contractile impairment to examine their effect in replicating the different features of HFpEF. The results show that with severe CR, LV could exhibit the characteristics of HFpEF with higher EF, as observed in recent clinical studies. Controlled fibre stiffening can simultaneously increase the end-diastolic pressure (EDP) and reduce the peak longitudinal strain (e) without significant reduction in EF, facilitating the moderate CR geometries to fit into this phenotype. Similarly, fibre stiffening can assist the CH and 'EH with wall thickening' cases to replicate HFpEF with lower EF. These findings suggest that potential treatment for these two phenotypes should target the bio-origins of their distinct ventricular remodelling patterns and the extent of myocardial stiffening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.109019 | DOI Listing |
Int J Med Sci
January 2025
Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People's Republic of China.
The efficacy of radiofrequency ablation (RFA) in patients with atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) has been established, but the efficacy and safety of cryoballoon ablation (CBA) and pulsed field ablation (PFA) remain unclear. This retrospective cohort study included 223 patients with paroxysmal non-valvular AF and HFpEF who underwent their first AF ablation between January 2017 and December 2021 and were divided into RFA (n = 77), CBA (n = 127), and PFA (n = 19) groups. After a mean follow-up of 11.
View Article and Find Full Text PDFJTCVS Open
December 2024
Department of Cardiovascular Surgery, Jefferson Health, Philadelphia, Pa.
Objective: To compare outcomes of aortic valve replacement (AVR) in patients with pure aortic stenosis (Pure AS) and those with pure aortic regurgitation (Pure AR) or mixed AS and AR (MAVD) in the COMMENCE trial.
Methods: Of 689 patients who underwent AVR in the COMMENCE trial, patients with moderate or severe AR with or without AS (Pure AR + MAVD; n = 135) or Pure AS (n = 323) were included. Inverse probability of treatment weighting Kaplan-Meier survival curves were used for time-to-event endpoints, and longitudinal changes in hemodynamics were evaluated using mixed-effects models.
BMC Cardiovasc Disord
January 2025
Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
Background: Hypertension is a major cause of cardiac dysfunction. The earliest manifestation is left ventricular remodeling/hypertrophy. The occurrence of adverse cardiac remodeling and outcomes occurs irrespective of age in blacks.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Cardiac Surgery, Assistance Publique-Hôpitaux de Paris, Creteil, France.
Background: Secondary mitral regurgitation (SMR) is a condition affecting the left ventricle (LV) rather than the mitral valve (MV). If the MV remains structurally unchanged, enlargement of the LV or impairment of the papillary muscles can occur. Several mechanical interventions are available to dictate the resolution of MR.
View Article and Find Full Text PDFRegen Biomater
November 2024
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
The hypoxia microenvironment post-myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), followed by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity pentose phosphate pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!