In the evolutionary arm race between plants and viral pathogens, the plant hormone abscisic acid (ABA) has surfaced as a crucial player. This review accumulates substantial evidence that portrays ABA as a crucial regulatory hub, coordinating the complex network of plant antiviral immunity. It is capable of synchronizing resistance pathways, yet it can also be exploited as a susceptibility factor by viral effectors. ABA fortifies multi-layered defenses on one hand, by activating RNA silencing mechanisms that precisely degrade viral genomes, strengthening plasmodesmal gateways with callose barriers, and priming the transcriptional programs of resistance genes. On the other hand, ABA can augment susceptibility by counteracting other defense hormones, dampening oxidative bursts, and inhibiting antiviral defence proteins. Interestingly, a variety of viruses have independently evolved strategies to manipulate ABA signalling pathways. This fascinating paradigm of hormonal conflicts unveils ABA as an important regulatory handle that determines infection trajectories. Future studies should carefully explore the multifaceted impacts of ABA modulation on plant immunity and susceptibility to diverse pathogens before considering practical applications in viral resistance strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2024.109046 | DOI Listing |
Dev Cell
January 2025
Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis.
View Article and Find Full Text PDFPlant Divers
November 2024
CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
Salinity is a severe abiotic stress that affects plant growth and yield. Salinity stress activates jasmonate (JA) signaling in , but the underlying molecular mechanism remains to be elucidated. In this study, we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1 (COI1)-mediated JA signaling for this process.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia.
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China.
Sci Rep
January 2025
Plant Production Engineering and Genetics Department, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!