Efficient synthesis of novel 1,10 phenanthroline-substituted imidazolium salts: Exploring their anticancer applications.

Eur J Med Chem

Department of Chemistry, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey. Electronic address:

Published: November 2024

This study reports a new series of 1,10-phenanthroline-substituted imidazolium salts (1a-f), examining their design, synthesis, structure and anticancer activities. The structures of these salts (1a-f) were characterized using H, C NMR, elemental analysis, mass spectrometry and Fourier transform infrared (FT-IR) spectroscopies. The salts' cytotoxic activities were tested against cancer cell lines, specifically MCF-7, MDA-MB-231 and non-tumorigenic MCF-10A mammary cells. The study compared the impact of aliphatic and benzylic groups in the salts' structure on their anticancer activity. Screening results revealed that compound 1c, in particular, showed promising inhibitory activity against the growth of MDA-MB-231 breast cancer cells, with an IC value of 12.8 ± 1.2 μM, indicating its potential as a chemotherapeutic agent. Cell apoptosis analysis demonstrated a tendency for compound 1c to induce early apoptosis in breast cancer cells. The stability/aquation of compound 1c was investigated using H NMR spectroscopy and its binding modes with DNA were explored via UV-Vis spectroscopy. Additionally, the study investigated the interaction residues and docking scores of compound 1c and the reference drug doxorubicin against Bax and Bcl-2 proteins using molecular docking.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2024.116775DOI Listing

Publication Analysis

Top Keywords

imidazolium salts
8
salts 1a-f
8
structure anticancer
8
breast cancer
8
cancer cells
8
efficient synthesis
4
synthesis novel
4
novel 110
4
110 phenanthroline-substituted
4
phenanthroline-substituted imidazolium
4

Similar Publications

The fluoride-ion battery (FIB) is a post-lithium anionic battery that utilizes the fluoride-ion shuttle, achieving high theoretical energy densities of up to 1393 Wh L without relying on critical minerals. However, developing liquid electrolytes for FIBs has proven arduous due to the low solubility of fluoride salts and the chemical reactivity of the fluoride ion. By introducing a chemically stable electrolyte based on 1,3-dimethylimidazolium [MMIm] bis(trifluoromethanesulfonyl)imide [TFSI] and tetramethylammonium fluoride (TMAF), we achieve an electrochemical stability window (ESW) of 4.

View Article and Find Full Text PDF

Efficient catalytic systems for various organic transformations in green solvents, especially water, are in great demand. Catalytically active bis-NHC complexes of palladium(II) based on imidazole-4,5-dicarboxylic acid with different lipophilicities were obtained. The synthesis of imidazolium salts was complicated by the formation of side products of nucleophilic substitution by iodide ions in the Menshutkin reaction involving alkyl iodides, which was successfully resolved by using alkyl tosylates.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on synthesizing and analyzing the structure of a compound featuring imidazolium ions as countercations, based on previously known crystal structures.
  • Various techniques, including thermal stability assessments and spectral analysis, reveal differences in how the pentadentate chelator µ-EDTA interacts with copper centers in two different compounds.
  • The findings highlight the impact of imidazolium ions on the magnetic properties and stability of the structures, supported by DFT calculations showing significant hydrogen bonding and stacking interactions within the trinuclear anion.
View Article and Find Full Text PDF

We report the use of carboxyl-functionalised alkylimidazolium salts as thermomorphic acid catalysts for the hydrolysis of cellulose and starch in water, free from organic solvents and auxiliary substances. The imidazolium salts are insoluble in water at room temperature and dissolve to form homogeneous solutions upon heating. Following catalysis at elevated temperatures the solution is cooled and the imidazolium salt precipitates from the aqueous layer to afford an aqueous glucose solution.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) are the second most prevalent infectious disease with being the most common etiological agent behind these infections, affecting more than 150 million people globally each year. In recent decades, the emergence of multi-drug resistant (MDR) pathogens has rapidly escalated. To combat antimicrobial resistance (AMR), it is important to synthesize new biologically effective alternatives like ionic liquids (ILs) to control the bacterial infection and their spread.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!