Excessive nonesterified fatty acids (NEFA) impair cellular metabolism and will induce fatty liver formation in dairy cows during the periparturient. Baicalin, an active flavonoid, has great potential efficacy in alleviating lipid accumulation and ameliorating the development of fatty liver disease. Nevertheless, its mechanism remains unclear. Here, the potential mechanism of baicalin on system levels was explored using network pharmacology and in vitro experiments. Firstly, the target of baicalin and fatty liver disease was predicted, and then the protein-protein interaction (PPI) network was constructed. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) (q-value) pathway enrichment is performed through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server. Finally, the results of the network analysis of the in vitro treatment of bovine hepatocytes by NEFA were confirmed. The results showed that 33 relevant targets of baicalin in the treatment of liver fatty were predicted by network pharmacology, and the top 20 relevant pathways were extracted by KEGG database. Baicalin treatment can reduce triglyceride (TAG) content and lipid droplet accumulation in NEFA-treated bovine hepatocytes, and the mechanism is related to inhibiting lipid synthesis and promoting lipid oxidation. The alleviating effect of baicalin on fatty liver may be related to the up-regulation of solute vector family member 4 (SLC2A4), Down-regulated AKT serine/threonine kinase 1 (AKT1), Peroxisome proliferator-activated receptor gamma (PPARG), Epidermal growth factor receptor (EGFR), tumor necrosis factor (TNF), Interleukin 6 (IL-6) were associated. These results suggested that baicalin may modulate key inflammatory markers, and lipogenesis processes to prevent fatty liver development in dairy cows.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.112954DOI Listing

Publication Analysis

Top Keywords

fatty liver
24
baicalin treatment
12
network pharmacology
12
baicalin
8
mechanism baicalin
8
fatty
8
dairy cows
8
liver disease
8
baicalin fatty
8
bovine hepatocytes
8

Similar Publications

Background/purpose: Although metabolic dysfunction-associated steatotic liver disease (MASLD) has been proposed to replace the diagnosis of non-alcoholic fatty liver disease (NAFLD) with new diagnostic criteria since 2023, the genetic predisposition of MASLD remains to be explored.

Methods: Participants with data of genome-wide association studies (GWAS) in the Taiwan Biobank database were collected. Patients with missing data, positive for HBsAg, anti-HCV, and alcohol drinking history were excluded.

View Article and Find Full Text PDF

Objectives: To evaluate the effects of postoperative pancreatic enzyme replacement therapy on fat digestion and absorption in patients following initial total pancreatectomy.

Methods: Data were retrospectively collected from patients who underwent initial total pancreatectomy at our department between 2012 and 2020. Fat digestion, absorption functions, serum nutritional markers, HbA1c levels, and hepatic steatosis before and after the initial total pancreatectomy were evaluated.

View Article and Find Full Text PDF

Small molecule-driven LKB1 deacetylation is responsible for the inhibition of hepatic lipid response in NAFLD.

J Lipid Res

January 2025

Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) is a progressive condition characterized by ectopic fat accumulation in the liver, for which no FAD-approved drugs currently exist. Emerging evidence highlights the role of liver kinase B1 (LKB1), a key metabolic regulator, has been proposed in NAFLD, particularly in response to excessive nutrient levels. However, few agents have been identified that can prevent the progression of nonalcoholic steatohepatitis (NASH) by targeting LKB1 deacetylation.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Nonalcoholic steatohepatitis (NASH) poses significant health risks; however, effective treatment options remain scarce. Yinchen-Gancao decoction (YG, a formula composed of Traditional Chinese Medicine Artemisia capillaris Thunb. and Glycyrrhiza uralensis Fisch.

View Article and Find Full Text PDF

Statins and non-alcoholic fatty liver disease: A concise review.

Biomed Pharmacother

January 2025

Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.

Non-alcoholic fatty liver disease (NAFLD) is a common hepatic manifestation of metabolic syndrome affecting 20-30 % of the adult population worldwide. This disease, which includes simple steatosis and non-alcoholic steatohepatitis, poses a significant risk for cardiovascular and metabolic diseases. Lifestyle modifications are crucial in the treatment of NAFLD; however, patient adherence remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!