A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New global minimum conformers for the Pt and Pt clusters: low symmetric species featuring different active sites. | LitMetric

New global minimum conformers for the Pt and Pt clusters: low symmetric species featuring different active sites.

J Mol Model

Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería, 8, Oviedo, 33006, Asturias, Spain.

Published: August 2024

Context: The study of platinum (Pt) clusters and nanoparticles is essential due to their extensive range of potential technological applications, particularly in catalysis. The electronic properties that yield optimal catalytic performance at the nanoscale are significantly influenced by the size and structure of Pt clusters. This research aimed to identify the lowest-energy conformers for Pt , Pt , and Pt species using Density Functional Theory (DFT). We discovered new low-symmetry conformers for Pt and Pt , which are 3.0 and 1.0 kcal/mol more stable, respectively, than previously reported structures. Our study highlights the importance of using density functional approximations that incorporate moderate levels of exact Hartree-Fock exchange, alongside basis sets of at least quadruple-zeta quality. The resulting structures are asymmetric with varying active sites, as evidenced by sigma hole analysis on the electrostatic potential surface. This suggests a potential correlation between electronic structure and catalytic properties, warranting further investigation.

Methods: An equivariant graph neural network interatomic potential (NequIP) within the Atomic Simulation Environment suite (ASE) was used to provide initial geometries of the aggregates under study. DFT calculations were performed with the ORCA 5 package, using functional approximations that included Generalized Gradient Approximation (PBE), meta-GGA (TPSS, M06-L), hybrid (PBE0, PBEh), meta-GGA hybrid (TPSSh), and range-separated hybrid ( B97x) functionals. Def2-TZVP and Def2-QZVP as well as members of the cc-pwCVXZ-PP family to check basis set convergence were used. QTAIM calculations were performed using the AIMAll suite. Structures were visualized with the AVOGADRO code.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330413PMC
http://dx.doi.org/10.1007/s00894-024-06099-5DOI Listing

Publication Analysis

Top Keywords

active sites
8
density functional
8
functional approximations
8
calculations performed
8
global minimum
4
minimum conformers
4
conformers clusters
4
clusters low
4
low symmetric
4
symmetric species
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!