Introduction: In the last decade, various Machine Learning techniques have been proposed aiming to individualise the dose of anticancer drugs mostly based on a presumed drug effect or measured effect biomarkers. The aim of this scoping review was to comprehensively summarise the research status on the use of Machine Learning for precision dosing in anticancer drug therapy.
Methods: This scoping review was conducted in accordance with the interim guidance by Cochrane and the Joanna Briggs Institute. We systematically searched the databases Medline (via PubMed), Embase and the Cochrane Library for research articles and reviews including results published after 2016. Results were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist.
Results: A total of 17 relevant studies was identified. In 12 of the included studies, Reinforcement Learning methods were used, including Classical, Deep, Double Deep and Conservative Q-Learning and Fuzzy Reinforcement Learning. Furthermore, classical Machine Learning methods were compared in terms of their performance and an artificial intelligence platform based on parabolic equations was used to guide dosing prospectively and retrospectively, albeit only in a limited number of patients. Due to the significantly different algorithm structures, a meaningful comparison between the various Machine Learning approaches was not possible.
Conclusion: Overall, this review emphasises the clinical relevance of Machine Learning methods for anticancer drug dose optimisation, as many algorithms have shown promising results enabling model-free predictions with the potential to maximise efficacy and minimise toxicity when compared to standard protocols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449958 | PMC |
http://dx.doi.org/10.1007/s40262-024-01409-9 | DOI Listing |
Expert Rev Med Devices
January 2025
Division of Gastroenterology, P.D Hinduja Hospital, Mumbai, India.
Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).
View Article and Find Full Text PDFInflammation
January 2025
Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China.
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!