Antibiotic-induced dysbiosis in the fish gut causes significant adverse effects. We use fecal microbiota transplantation (FMT) to accelerate the restoration of florfenicol-perturbed intestinal microbiota in koi carp, identifying key bacterial populations and metabolites involved in the recovery process through microbiome and metabolome analyses. We demonstrate that florfenicol disrupts intestinal microbiota, reducing beneficial genera such as Lactobacillus, Bifidobacterium, Bacteroides, Romboutsia, and Faecalibacterium, and causing mucosal injuries. Key metabolites, including aromatic amino acids and glutathione-related compounds, are diminished. We show that FMT effectively restores microbial populations, repairs intestinal damage, and normalizes critical metabolites, while natural recovery is less effective. Spearman correlation analyses reveal strong associations between the identified bacterial genera and the levels of aromatic amino acids and glutathione-related metabolites. This study underscores the potential of FMT to counteract antibiotic-induced dysbiosis and maintain fish intestinal health. The restored microbiota and normalized metabolites provide a basis for developing personalized probiotic therapies for fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329668PMC
http://dx.doi.org/10.1038/s42003-024-06727-zDOI Listing

Publication Analysis

Top Keywords

intestinal microbiota
12
fecal microbiota
8
microbiota transplantation
8
antibiotic-induced dysbiosis
8
aromatic amino
8
amino acids
8
acids glutathione-related
8
intestinal
5
microbiota
5
metabolites
5

Similar Publications

Primary sclerosing cholangitis is one of the most challenging conditions in hepatology, and due to our limited understanding of its pathogenesis, no causal therapies are currently available. While it was long assumed that a minority of people with IBD also develop PSC, which is sometimes labeled an extraintestinal manifestation of IBD, the clinical phenotype, genetic and intestinal microbiota associations strongly argue for PSC-IBD being a distinct form of IBD, existing alongside ulcerative colitis and Crohn's disease. In fact, the liver itself could contribute to intestinal pathology, clinically overt in 60 - 80 % of patients.

View Article and Find Full Text PDF

regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice.

Gut Microbes

December 2025

Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA.

The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct strains might lead to functional differences in the gut microbiome.

View Article and Find Full Text PDF

The complex microbial community residing in the human gut has long been understood to regulate gastrointestinal physiology and to participate in digestive diseases, but its extraintestinal actions and influences are increasingly recognized. This article discusses bidirectional interactions between the gut microbiome and athletic performance, metabolism, longevity and the ability of the gut-brain axis to influence cognitive function and mental health.

View Article and Find Full Text PDF

Unlabelled: The gut microbiota is closely associated with inflammatory bowel disease (IBD) and colorectal cancer (CRC). Probiotics such as (CB) or (AKK) have the potential to treat inflammatory bowel disease (IBD) or colorectal cancer (CRC). However, research on the combined therapeutic effects and immunomodulatory mechanisms of CB and AKK in treating IBD or CRC has never been studied.

View Article and Find Full Text PDF

Advances in understanding dietary fiber: Classification, structural characterization, modification, and gut microbiome interactions.

Compr Rev Food Sci Food Saf

January 2025

Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.

Gut microbiota and their metabolites profoundly impact host physiology. Targeted modulation of gut microbiota has been a long-term interest in the scientific community. Numerous studies have investigated the feasibility of utilizing dietary fibers (DFs) to modulate gut microbiota and promote the production of health-beneficial bacterial metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!