AI Article Synopsis

  • Deep learning models for glioma predictions have had limitations like manual segmentation and lack of biological insight, prompting the development of a new end-to-end multi-task deep learning (MDL) pipeline.
  • This MDL model predicts not only molecular alterations and histological grades but also patient prognosis by analyzing data from 2,776 glioma patients across multiple datasets.
  • The model shows impressive accuracy in predicting key factors like IDH mutation status and tumor grade, while also revealing correlations with biological processes that may improve personalized treatment decisions in glioma patients.

Article Abstract

Deep learning models have been developed for various predictions in glioma; yet, they were constrained by manual segmentation, task-specific design, or a lack of biological interpretation. Herein, we aimed to develop an end-to-end multi-task deep learning (MDL) pipeline that can simultaneously predict molecular alterations and histological grade (auxiliary tasks), as well as prognosis (primary task) in gliomas. Further, we aimed to provide the biological mechanisms underlying the model's predictions. We collected multiscale data including baseline MRI images from 2776 glioma patients across two private (FAHZU and HPPH, n = 1931) and three public datasets (TCGA, n = 213; UCSF, n = 410; and EGD, n = 222). We trained and internally validated the MDL model using our private datasets, and externally validated it using the three public datasets. We used the model-predicted deep prognosis score (DPS) to stratify patients into low-DPS and high-DPS subtypes. Additionally, a radio-multiomics analysis was conducted to elucidate the biological basis of the DPS. In the external validation cohorts, the MDL model achieved average areas under the curve of 0.892-0.903, 0.710-0.894, and 0.850-0.879 for predicting IDH mutation status, 1p/19q co-deletion status, and tumor grade, respectively. Moreover, the MDL model yielded a C-index of 0.723 in the TCGA and 0.671 in the UCSF for the prediction of overall survival. The DPS exhibits significant correlations with activated oncogenic pathways, immune infiltration patterns, specific protein expression, DNA methylation, tumor mutation burden, and tumor-stroma ratio. Accordingly, our work presents an accurate and biologically meaningful tool for predicting molecular subtypes, tumor grade, and survival outcomes in gliomas, which provides personalized clinical decision-making in a global and non-invasive manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329669PMC
http://dx.doi.org/10.1038/s41698-024-00670-2DOI Listing

Publication Analysis

Top Keywords

deep learning
12
mdl model
12
multi-task deep
8
molecular alterations
8
glioma patients
8
three public
8
public datasets
8
tumor grade
8
biologically interpretable
4
interpretable multi-task
4

Similar Publications

Background: Unplanned readmission, a measure of surgical quality, occurs after 4.8% of primary total knee arthroplasties (TKA). Although the prediction of individualized readmission risk may inform appropriate preoperative interventions, current predictive models, such as the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) surgical risk calculator (SRC), have limited utility.

View Article and Find Full Text PDF

Background: Early Childhood Education and Care (ECEC) centers play an important role in fostering healthy dietary habits. The Nutrition Now project focusing on improving dietary habits during the first 1000 days of life. Central to the project is the implementation of an e-learning resource aimed at promoting feeding practices among staff and healthy dietary behaviours for children aged 0-3 years in ECEC.

View Article and Find Full Text PDF

Background And Purpose: The purpose of reflection in the learning process is to create meaningful and deep learning. Considering the importance of emphasizing active and student-centered methods in learning and the necessity of learners' participation in the education process, the present study was conducted to investigate the effect of flipped classroom teaching method on the amount of reflection ability in nursing students and the course of professional ethics.

Study Method: The current study is a quasi-experimental study using Solomon's four-group method.

View Article and Find Full Text PDF

Optimizing hip MRI: enhancing image quality and elevating inter-observer consistency using deep learning-powered reconstruction.

BMC Med Imaging

January 2025

Department of Magnetic Resonance Imaging, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.

Background: Conventional hip joint MRI scans necessitate lengthy scan durations, posing challenges for patient comfort and clinical efficiency. Previously, accelerated imaging techniques were constrained by a trade-off between noise and resolution. Leveraging deep learning-based reconstruction (DLR) holds the potential to mitigate scan time without compromising image quality.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are pivotal in the initiation and progression of complex human diseases and have been identified as targets for small molecule (SM) drugs. However, the expensive and time-intensive characteristics of conventional experimental techniques for identifying SM-miRNA associations highlight the necessity for efficient computational methodologies in this field.

Results: In this study, we proposed a deep learning method called Multi-source Data Fusion and Graph Neural Networks for Small Molecule-MiRNA Association (MDFGNN-SMMA) to predict potential SM-miRNA associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!