AI Article Synopsis

  • - This study investigates how exosomes from cancer-associated fibroblasts (CAFs) impact the growth and spread of non-small cell lung cancer (NSCLC) cells, focusing on a specific RNA molecule called LINC01833.
  • - Researchers isolated CAFs and normal fibroblasts from patients, analyzed the expression levels of LINC01833, and conducted various assays to study the effects on NSCLC cell behaviors and macrophage polarization.
  • - Findings revealed that high levels of LINC01833 in NSCLC promote cell proliferation, migration, and invasion while also encouraging the transformation of macrophages into a form that supports cancer growth, suggesting that LINC01833 could be a potential target for cancer therapy.

Article Abstract

Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment (TME) and can induce functional polarization of tumor macrophages. This study aimed to explore the effect of CAFs-derived exosome LINC01833 on the malignant biological behavior of non-small cell lung cancer (NSCLC) cells and its mechanism. Tumor tissues (n = 3) and adjacent noncancerous tissues (n = 3) were collected from patients with NSCLC, and fibroblasts (CAF, NF) were isolated from the two tissues. Expression of LINC01833/miR-335-5p/VAPA in NSCLC clinical tissues and cell lines was detected by RT-qPCR. Exosomes of CAFs and NFs were isolated by ultracentrifugation. Cell proliferation, migration, invasion, and M2 macrophage polarization were detected by MTT, transwell, wound-healing assay, and flow cytometry assay, while western blot was used to verify the expression of M2 macrophage polarization-related proteins. Tumor volume weight and M2 macrophage polarization were detected by tumor xenografts in nude mice. LINC01833 was highly expressed in NSCLC tumor tissues and cells. Knockdown of LINC01833 exosomes could significantly inhibit proliferation, migration, invasion of NSCLC cells, and M2 macrophage polarization of THP-1 cells, while simultaneous knockdown of miR-335-5p on the above basis could reverse the effect of knockdown of LINC01833. In vivo experiments also indicated that knockdown of LINC01833 exosomes suppressed tumor growth and M2 macrophage polarization. CAF-derived LINC01833 exosomes can promote the proliferation, migration and invasion of NSCLC cells and M2 macrophage polarization by inhibiting miR-335-5p and regulating VAPA activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.23769DOI Listing

Publication Analysis

Top Keywords

macrophage polarization
20
nsclc cells
12
proliferation migration
12
migration invasion
12
knockdown linc01833
12
linc01833 exosomes
12
cancer-associated fibroblasts
8
non-small cell
8
cell lung
8
lung cancer
8

Similar Publications

Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.

View Article and Find Full Text PDF

Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

Erianin alleviates autoimmune myocarditis by suppressing the M1 polarization of macrophages via the NF-κB/NLRP3 signaling pathway.

Eur J Pharmacol

January 2025

Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Background: Myocarditis tends to lead to a poor prognosis, but there are no satisfactory preventive or therapeutic strategies. Erianin, a natural benzene compound, has been found to have antioxidant and anti-inflammatory effects. However, the effects of erianin on myocarditis remain unclear.

View Article and Find Full Text PDF

Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative Leishmaniasis therapy.

Microb Pathog

January 2025

Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:

Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!