A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accelerating Fourth-Generation Machine Learning Potentials Using Quasi-Linear Scaling Particle Mesh Charge Equilibration. | LitMetric

Machine learning potentials (MLPs) have revolutionized the field of atomistic simulations by describing atomic interactions with the accuracy of electronic structure methods at a small fraction of the cost. Most current MLPs construct the energy of a system as a sum of atomic energies, which depend on information about the atomic environments provided in the form of predefined or learnable feature vectors. If, in addition, nonlocal phenomena like long-range charge transfer are important, fourth-generation MLPs need to be used, which include a charge equilibration (Qeq) step to take the global structure of the system into account. This Qeq can significantly increase the computational cost and thus can become a computational bottleneck for large systems. In this Article, we present a highly efficient formulation of Qeq that does not require the explicit computation of the Coulomb matrix elements, resulting in a quasi-linear scaling method. Moreover, our approach also allows for the efficient calculation of energy derivatives, which explicitly consider the global structure-dependence of the atomic charges as obtained from Qeq. Due to its generality, the method is not restricted to MLPs and can also be applied within a variety of other force fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360134PMC
http://dx.doi.org/10.1021/acs.jctc.4c00334DOI Listing

Publication Analysis

Top Keywords

machine learning
8
learning potentials
8
quasi-linear scaling
8
charge equilibration
8
accelerating fourth-generation
4
fourth-generation machine
4
potentials quasi-linear
4
scaling particle
4
particle mesh
4
mesh charge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!