Periodontitis is featured as the periodontium's pathologic destruction caused by the host's overwhelmed inflammation. Omentin-1 has been reported to be aberrantly downregulated in patients with periodontitis, but the specific regulation of Omentin-1 during the pathogenesis of periodontitis remains unclear. In this study, human periodontal ligament stem cells (hPDLSCs) were stimulated by lipopolysaccharide (LPS) from Porphyromonas gingivalis to establish an in vitro inflammatory periodontitis model. hPDLSCs were treated with recombinant human Omentin-1 (250, 500 and 750 ng/mL) for 3 h before LPS stimulation. Results revealed that Omentin-1 significantly inhibited LPS-induced inflammation in hPDLSCs through reducing the production of proinflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6) and downregulating the expression of Cox2 and iNOS. Meanwhile, Omentin-1 significantly enhanced alkaline phosphatase (ALP) activity and Alizarin red-stained area, accompanied by increasing expression osteogenic markers BMP2, OCN and Runx2, confirming that Omentin-1 restores osteogenic differentiation in LPS-induced hPDLSCs. In addition, the conditioned medium (CM) from LPS-induced hPDLSCs was harvested to culture macrophages, which resulted in macrophage polarization towards M1, while CM from Omentin-1-treated hPDLSCs reduced M1 macrophages polarization and elevated M2 polarization. Furthermore, Omentin-1 also inhibited LPS-triggered endoplasmic reticulum (ER) stress in hPDLSCs, and additional treatment of the ER stress activator tunicamycin (TM) partially reversed the functions of Omentin-1 on inflammation, osteogenic differentiation and macrophages polarization. In summary, Omentin-1 exerted a protective role against periodontitis through inhibiting inflammation and enhancing osteogenic differentiation of hPDLSCs, providing a novelty treatment option for periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prostaglandins.2024.106882DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
16
macrophages polarization
12
omentin-1
10
inflammation osteogenic
8
periodontal ligament
8
ligament stem
8
stem cells
8
endoplasmic reticulum
8
reticulum stress
8
hpdlscs
8

Similar Publications

Guidance on the assessment of the functionality of biomaterials for periodontal tissue regeneration: Methodologies and testing procedures.

Dent Mater

January 2025

Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:

Innovative biomaterials and tissue engineering strategies show great promise in regenerating periodontal tissues. This guidance provides an overview and detailed recommendations for evaluating the biological functionality of these new biomaterials in vitro, focusing on mineralization, immunomodulatory effects, cellular differentiation, and angiogenesis. Additionally, it discusses the use of in vivo experimental models that mimic periodontitis and scrutinizes methods such as osteogenic differentiation, immunomodulation, and anti-inflammatory responses to assess the effectiveness of these biomaterials in promoting periodontal tissue reconstruction.

View Article and Find Full Text PDF

In clinical scenarios, bone defects stemming from trauma, infections, degenerative diseases, or hereditary conditions necessitate considerable bone grafts. Researchers ardently focus on creating diverse biomaterials to expedite and enhance these intricate restorative processes. These biomaterials play a pivotal role in aiding osteogenesis and angiogenesis factors for reconstructing stable, fully developed bone tissue.

View Article and Find Full Text PDF

An emodin-mediated multifunctional nanoplatform with augmented sonodynamic and immunoregulation for osteomyelitis therapy.

J Colloid Interface Sci

January 2025

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032 China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006 China. Electronic address:

Emodin (ED), as a traditional Chinese medicine, possesses a variety of biological activities and is also one of natural sonosensitizer. Whether emodin could react with titanium dioxide to enhance the sonodynamic activity for safely treating osteomyelitis remains to be explored. Hence, an ED-conjugated Mn-doped titanium dioxide (TOM) nanorod array is designed and prepared on titanium to eliminate bacterial infections under ultrasound (US) treatment.

View Article and Find Full Text PDF

Comprehensive three-dimensional microCT and signaling analysis reveal the teratogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on craniofacial bone development in mice.

Ecotoxicol Environ Saf

January 2025

Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China. Electronic address:

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) is a chronic systemic bone metabolism disorder. Promotion in the patterns of human bone marrow mesenchymal stem cells (hBMSCs) differentiation towards osteoblasts contributes to alleviating osteoporosis. Aucubin, a natural compound isolated from the well-known herbal medicine Eucommia, was previously shown to possess various pharmacological effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!