A transcription factor ATF3 involves in the phagocytosis of granulocytes in oyster Crassostrea gigas.

Dev Comp Immunol

Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.

Published: December 2024

Phagocytosis is a major cellular mechanism for mollusk granulocytes to eliminate nonself substances and dead cells, and thus to preserve the immune homeostasis. The knowledge of the regulatory mechanisms controlling phagocytic capacity is vital to understanding the immune system. In the present study, an ATF3 homolog (CgATF3) with a typical bZIP domain was identified in the Pacific oyster Crassostrea gigas. Its highly conserved bZIP domain consisted of two structural features, a basic region for DNA binding and a leucine zipper region for dimerization. Its transcript was found to be abundantly expressed in haemocytes, which was induced by Vibrio splendidus stimulation and recombinant CgTNF-2 treatment, along with an increase of its protein content in the nucleus. Moreover, CgATF3 showed a consistent and specific high expression in granulocytes, and CgATF3 granulocytes were characterized morphologically by the largest diameter, smaller nucleus to cytoplasmic ratio, and abundant cytoplasmic granules, and functionally by a higher capacity for phagocytosis. When CgATF3 expression was inhibited by RNAi, the expression levels of CgRab1, CgRab33 and CgCathepsin L1, as well as the phagocytic rate and index of granulocytes all decreased after V. splendidus stimulation. These results together demonstrated the involvement of CgATF3 in regulating the expressions of Rabs and Cathepsin L1, as well as the phagocytosis of granulocytes in oyster C. gigas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2024.105244DOI Listing

Publication Analysis

Top Keywords

phagocytosis granulocytes
8
granulocytes oyster
8
oyster crassostrea
8
crassostrea gigas
8
bzip domain
8
splendidus stimulation
8
granulocytes
6
cgatf3
5
transcription factor
4
factor atf3
4

Similar Publications

Introduction: Chronic granulomatous disease is a defect in phagocytosis due to deficiency of gp91phox, p22phox, p47phox, p40phox, and p67phox (classic form of the disease). Recently, EROS and p40phox deficiency were described as responsible for the non-classical form of the disease. The 1,2,3-dihydrorhodamine oxidation technique, with phorbol-12-myristate-13-acetate as a stimulus, is performed to diagnose the classic chronic granulomatous disease.

View Article and Find Full Text PDF

Background: Proton pump inhibitors (PPIs) are one of the most used drugs worldwide. While generally considered safe, the usage of PPIs is associated with several adverse outcomes including acute infectious diseases. PPIs influence macrophage and neutrophil function although a systematic review has never been undertaken.

View Article and Find Full Text PDF

Effects of the pan-caspase inhibitor Q-VD-OPh on human neutrophil lifespan and function.

PLoS One

January 2025

Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America.

Human neutrophils are abundant, short-lived leukocytes that turn over at a rate of approximately 1011 cells/day via a constitutive apoptosis program. Certain growth factors, inflammatory mediators and infectious agents can delay apoptosis or induce neutrophils to die by other mechanisms. Nonetheless, a large body of data demonstrates that apoptosis of untreated neutrophils typically ensues within 24 hours of cell isolation and in vitro culture.

View Article and Find Full Text PDF

The mRNA-binding protein KSRP (KH-type splicing regulatory protein) is known to modulate immune cell functions post-transcriptionally, e.g., by reducing the mRNA stability of cytokines.

View Article and Find Full Text PDF

Complement activation drives the phagocytosis of necrotic cell debris and resolution of liver injury.

Front Immunol

January 2025

Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.

Cells die by necrosis due to excessive chemical or thermal stress, leading to plasma membrane rupture, release of intracellular components and severe inflammation. The clearance of necrotic cell debris is crucial for tissue recovery and injury resolution, however, the underlying mechanisms are still poorly understood, especially . This study examined the role of complement proteins in promoting clearance of necrotic cell debris by leukocytes and their influence on liver regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!