Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The increase in the frequency and severity of global wildfires has been largely influenced by climate change and land use changes. From February 2 to 6, 2024, central Chile experienced its most devastating wildland-urban interface wildfire in history, severely impacting the Valparaíso region. This catastrophic event, which led to extensive forest destruction, the loss of thousands of homes, and over a hundred human fatalities, directly impacted the area surrounding the campus of Federico Santa María Technical University. In that period, an air quality monitoring campaign was set up on the campus to measure black carbon (BC) and particulate matter (PM) during the wildfire season. The monitoring station was located directly within the smoke plume, allowing for the collection of unprecedented air quality data. Extremely high concentrations of BC at 880 nm were reported during the wildfires, with a daily mean (±σ) of 14.83 ± 19.52 μg m. Peak concentrations measured at 880 nm and 375 nm reached 812.89 μg m and 1561.24 μg m, respectively. The maximum daily mean BC concentrations at these wavelengths were 55 and 99 times higher, respectively, compared to the pre-event period. The mean Ångström absorbing coefficient during the event was 1.66, indicating biomass burning as the primary BC source, while the maximum BC/PM ratio (at 375 nm) reached 57 %. From February 2 to 5, 2024, PM concentrations exceeded the Chilean air quality standard by 82 % and 198 % for coarse and fine particles, respectively. These levels are 4.7 and 6.0 times higher than the World Health Organization's recommendations. These elevated concentrations persisted for up to three days after the fire was extinguished. This study provides unique evidence of the rapid deterioration of regional air quality during a wildfire event using in situ measurements, serving as a stark reminder of the far-reaching consequences of a warming climate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175541 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!