This study explored the mechanism of Huangbai liniment (HB) for the treatment of oral lichen planus (OLP) through network pharmacology and molecular docking techniques. The study identified HB' active ingredients, therapeutic targets for OLP, and associated signaling pathways. The chemical composition of HB was screened using the HERB database. The disease targets of OLP were obtained through the GeneCards and OMIM databases. A protein-protein interactions network was constructed with the String platform. Topological analysis was performed using Cytoscape software to identify core targets. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were performed using the Hiplot database, and the active ingredients and core targets were verified by molecular docking. Date analysis showed that the active composition of HB in the treatment of OLP were quercetin, wogonin, kaempferol, and luteolin. This survey identified 10 potential therapeutic targets, including TNF, CXCL8, IL-6, IL1B, PIK3R1, ESR1, JUN, AKT1, PIK3CA, and CTNNB1. Molecular docking revealed stable interactions between OLP' key targets and HB. These key targets were predominantly involved in the PI3K-Akt signaling pathway, AGE-RAGE signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway. HB plays a crucial role in the treatment of OLP, acting on multiple targets and pathways, particularly the PI3K-Akt signaling pathway. It regulated biological processes like the proliferation of epithelial cells and lymphocytes and mediates the expression of transcription factors, cytokines, and chemokines. Therefore, this study provides a theoretical basis for the clinical trial and application of HB in the therapy of OLP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332744 | PMC |
http://dx.doi.org/10.1097/MD.0000000000039352 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China.
Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!