Background: Previous researches have demonstrated that the traditional Chinese medicine could therapeutically treat inflammatory and hypoxic diseases by enhancing the functionality of mesenchymal stem cells. However, its mechanism was not yet clear. This research aimed to investigate the impact of the traditional Chinese medicine Sijunzi decoction and its herb monomer ginsenoside Rg1 on the proliferation and differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) and explore the underlying mechanisms.

Methods: Different concentrations of Sijunzi decoction and Rg1 were applied to differentiating induced hUC-MSCs. The CCK-8 test was utilized to evaluate cell proliferation activity and identify suitable drug concentrations. Alizarin Red staining was employed to detect the formation of calcium nodules, and Oil Red O staining was used to assess the formation of lipid droplets. PCR was utilized to examine gene expression related to osteogenic differentiation, adipogenic differentiation, and the HIF-1α signaling pathway in hUC-MSCs. Western blot analysis was conducted to evaluate protein expression in osteogenic differentiation and HIF-1α. ELISA was performed to measure HIF-1α signaling factors and inflammatory cytokine expression. Biochemical assays were used to assess changes in oxidative stress indicators.

Results: The Sijunzi decoction and Rg1 both demonstrated a dose-dependent promotion of hUC-MSC proliferation. The Sijunzi decoction significantly increased the expression of genes and proteins relevant to osteogenesis, such as osterix, osteocalcin, RUNX2, and osteopontin, and activated the HIF-1α pathway in hUC-MSCs. (P < .05). Similar effects were observed at the gene level after treatment with Rg1. Simultaneously, Sijunzi decoction significantly reduced the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, while increasing the secretion of the anti-inflammatory cytokine IL-10 during osteogenic differentiation (P < .05). Moreover, Sijunzi decoction lowered oxidative stress levels and enhanced the antioxidant capacity of hUC-MSCs during osteogenic differentiation (P < .05). However, the impact of Sijunzi decoction on hUC-MSCs toward adipogenic differentiation was not significant (P > .05).

Conclusion: Sijunzi decoction promotes the proliferation and osteogenic differentiation of hUC-MSCs, potentially through the activation of the HIF-1α signaling pathway and by modulating the microenvironment via reducing inflammation and oxidative stress levels. Rg1 might be involved in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332729PMC
http://dx.doi.org/10.1097/MD.0000000000039350DOI Listing

Publication Analysis

Top Keywords

sijunzi decoction
20
decoction rg1
12
mesenchymal stem
12
stem cells
12
rg1 proliferation
8
proliferation differentiation
8
differentiation human
8
human umbilical
8
umbilical cord
8
cord mesenchymal
8

Similar Publications

Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats.

Stem Cell Res Ther

December 2024

National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.

Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.

Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.

View Article and Find Full Text PDF

The mechanism of SiJunZi decoction in the treatment of Parkinson's disease.

Brain Res

December 2024

Shunde Hospital of Guangzhou University of Chinese Medicine, No.12, Jinsha Avenue, Daliang Street, Shunde District, Foshan City, Guangdong Province, China. Electronic address:

Parkinson's disease (PD) is the second most common neurodegenerative disease, but treatment options for PD are limited, and drug development has reached a bottleneck. With the progress of the aging population, the number of PD patients in China is increasing day by day, imposing a heavy burden on patients and society. Therefore, it is urgent to explore targeted medicine based on the pathogenesis of PD and disease targets.

View Article and Find Full Text PDF

Aim: To explore the molecular mechanism of Sijunzi Decoction (SJZD) in the treatment of Parkinson's disease (PD) through the application of network pharmacology, molecular docking, and molecular dynamics simulations, complemented by experimental verification.

Methods: The BATMAN-TCM, GeneCards, and DisGeNet databases were searched to screen the active components and therapeutic targets of SJZD. Cytoscape (3.

View Article and Find Full Text PDF

Optimized therapeutic potential of Sijunzi-similar formulae for chronic atrophic gastritis via Bayesian network meta-analysis.

EXCLI J

September 2024

Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany.

Chronic atrophic gastritis (CAG) is considered as a significant risk factor for triggering gastric cancer incidence, if not effectively treated. decoction (SD) is a well-known classic formula for treating gastric disorders, and -similar formulae (SF) derived from SD have also been highly regarded by Chinese clinical practitioners for their effectiveness in treating chronic atrophic gastritis. Currently, there is a lack of meta-analysis for these formulae, leaving unclear which exhibits optimal efficacy.

View Article and Find Full Text PDF

Sijunzi decoction (SJZD) has been widely used to treat splenic deficiency syndrome. Previous studies confirmed that polysaccharides and non-polysaccharides (NPS) are the main active components of SJZD. This study aimed to investigate the composition and activity of oligosaccharides in NPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!