A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unveiling correlated two-dimensional topological insulators through fermionic tensor network states-classification, edge theories and variational wavefunctions. | LitMetric

The study of topological band insulators has revealed fascinating phases characterized by band topology indices and anomalous boundary modes protected by global symmetries. In strongly correlated systems, where the traditional notion of electronic bands becomes obsolete, it has been established that topological insulator phases persist as stable phases, separate from the trivial insulators. However, due to the inability to express the ground states of such systems as Slater determinants, the formulation of generic variational wave functions for numerical simulations is highly desirable. In this paper, we tackle this challenge for two-dimensional topological insulators by developing a comprehensive framework for fermionic tensor network states. Starting from simple assumptions, we obtain possible sets of tensor equations for any given symmetry group, capturing consistent relations governing symmetry transformation rules on tensor legs. We then examine the connection between these tensor equations andtopological insulators by constructing edge theories and extracting quantum anomaly data from each set of tensor equations. By exhaustively exploring all possible sets of equations, we achieve a systematic classification of non-chiral topological insulator phases. Imposing the solutions of a given set of equations onto local tensors, we obtain generic variational wavefunctions for the corresponding topological insulator phases. Our methodology provides an important step toward simulating topological insulators in strongly correlated systems. We discuss the limitations and potential generalizations of our results, paving the way for further advancements in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6633/ad7058DOI Listing

Publication Analysis

Top Keywords

topological insulators
12
topological insulator
12
insulator phases
12
tensor equations
12
two-dimensional topological
8
fermionic tensor
8
tensor network
8
edge theories
8
variational wavefunctions
8
correlated systems
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!